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An Internal Model for Sensorimotor Integration
Daniel M. Wolpert,* Zoubin Ghahramani, Michael |. Jordan

On the basis of computational studies it has been proposed that the central nervous
system internally simulates the dynamic behavior of the motor system in planning, control,
and learning; the existence and use of such an internal model is still under debate. A
sensorimotor integration task was investigated in which participants estimated the lo-
cation of one of their hands at the end of movements made in the dark and under externally
imposed forces. The temporal propagation of errors in this task was analyzed within the
theoretical framework of optimal state estimation. These results provide direct support for

the existence of an internal model.

The notion of an internal model, a system
that mimics the behavior of a natural pro-
cess, has emerged as an important theoretical
concept in motor control (1). There are two
varieties of the internal model: (i) forward
models, which mimic the causal flow of a
process by predicting its next state (for ex-
ample, position and velocity) given the cur-
rent state and the motor command; and (ii)
inverse models, which invert the causal flow
by estimating the motor command that
caused a particular state transition. Forward
models have been shown to be of potential
use for solving four fundamental problems in
computational motor control. First, the de-
lays in most sensorimotor loops are large,
making feedback control too slow for rapid
movements. With the use of a forward model
for internal feedback, the outcome of an
action can be estimated and used before
sensory feedback is available (2, 3). Second,
a forward model is a key ingredient in a
system that uses motor outflow (also called
efference copy) to anticipate and cancel the
sensory effects of movement (also called re-
affererice) (4). Third, a forward model can
be used to transform errors between the de-
sired and actual sensory outcome of a move-
ment into the corresponding errors in the
motor command, thereby providing appro-
priate signals for motor learning (5). Simi-
larly, by predicting the sensory outcome of
the action without actually performing it, a
forward model can be used in mental prac-
tice to learn to select between possible ac-
tions (6). Finally, a forward model can be
used for state estimation in which the mod-
el’s prediction of the next state is combined
with a reafferent sensory correction (7). Al-
though shown to be of theoretical use, the
existence of an internal forward model in the
central nervous system (CNS) is still a topic

of debate.

»

Department of Brain and Cognitive Sciences, Massachu-
setts Institute of Technology, Cambridge, MA 02139,
USA.

*Present address to which correspondence should be
addressed: Sobell Department of Neurophysiology, Insti-
tute of Neurology, Queen Square, London WC1N 3BG,
UK.

SCIENCE e VOL. 269 e

29 SEPTEMBER 1995

When we move an arm in the absence of
visual feedback, there are three basic meth-
ods the CNS can use to obtain an estimate
of the current state—the position and ve-
locity—of the hand. The system can make
use of sensory inflow (the information
available from proprioception), it can make
use of integrated motor outflow (the metor
commands sent to the arm), or it can com-
bine these two sources of information by use
of a forward model. To test between these
possibilities, we carried out an experiment
in which participants, after initially viewing
one of their arms in the light, made arm
movements in the dark. Three experimen-
tal conditions were studied, involving the
use of null, assistive, and resistive force
fields. We assessed the participants’ internal
estimate of hand location by asking them to
localize visually the position of their hand
at the end of the movement (8). The bias of
this location estimate, plotted as a function
of movement duration, shows a consistent
overestimation of the distance moved (Fig.
1). This bias shows two distinct phases as a
function of movement duration: an initial
increase reaching a peak of 0.9 cm after 1 s
followed by a sharp transition to a region of
gradual decline. The variance of the esti-
mate also shows an initial increase during
the first second of movement after which it
plateaus at about 2 cm?. External forces had
distinct effects on the bias and variance
propagation. Whereas the bias was in-
creased by the assistive force and decreased
by the resistive force, the variance was un-
affected.

These experimental results can be fully
accounted for if we assume that the motor
control system integrates the efferent out-
flow and the reafferent sensory inflow. To
establish this conclusion, we developed an
explicit model of the sensorimotor integra-
tion process, which contains as special cases
all three of the methods referred to above
(9). This model is based on the observer
framework (7) from engineering in which
the state estimator (or observer) has access
to both the inputs and outputs of the system.
Specifically, the input to the arm is the



motor command and the output is the sen-
sory feedback that, in the absence of vision,
consists solely of proprioception. On the ba-
sis of these two sources, the observer produc-
es an estimate of the state of the system. In
particular, we chose to use a Kalman filter
(10) observer, which is a linear dynamical
system that produces an estimate of the lo-
cation of the hand by using both the motor
outflow and sensory feedback in conjunction
with a model of the motor system. Using
these sources of information, the model es-
timates the arm’s state, integrating sensory

and motor signals to reduce the overall un-
certainty in its estimate.

The model is a combination of two pro-
cesses that together contribute to the state
estimate. The first process (upper part, Fig.
2A) uses the current state estimate and mo-
tor command to predict the next state by
simulating the movement dynamics with a
forward model. The second process (lower
part, Fig. 2ZA) uses a model of the sensory
output process to predict the sensory feed-
back from the current state estimate. The
sensory error—the difference between actual
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generalized additive model to the data. The propagation of the (B) bias and (C) variance of the state
estimate is shown, with outer standard error lines, against movement duration. The differential effects on
(D) bias and (E) variance of the external force, assistive (dotted lines) and resistive (solid lines), are also
shown relative to zero (dashed line). A positive bias represents an overestimation of the distance moved.
The difference in variance propagation between the resistive and assistive fields was not significant over
the movement; the difference in bias was significant at the P = 0.05 level.
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the current state estimate to

achieve a state estimate using the Current state
forward model to simulate the estimate
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and predicted sensory feedback—is used to
correct the state estimate resulting from the
forward model. The relative contributions of
the internal simulation and sensory correc-
tion processes to the final estimate are mod-
ulated by the Kalman gain so as to provide
optimal state estimates. By making particular
choices for the parameters of the Kalman
filter, we were able to simulate motor out-
flow—based estimation (11), sensory inflow—
based estimation, and forward model-based
sensorimotor integration. Moreover, to ac-
commodate the observation that partici-
pants generally tend to overestimate the dis-
tance that their arm has moved, we set the
gain that couples force to state estimates to a
value that is larger than its veridical value
(12). All other components of the internal
model were set to their veridical values.
The Kalman filter model demonstrates
the two distinct phases of bias propagation
observed (Fig. 2, B through E). By overes-
timating the force acting on the ‘arm, the
forward model overestimates the distance
traveled, an integrative process eventually
balanced by the sensory correction. The
model also captures the differential effects
on bias of the externally imposed forces. By
overestimating an increased force under the
assistive condition, the bias in the forward
model accrues more rapidly and is balanced
by the sensory feedback at a higher level.
The converse applies to the resistive force.
The pattern of variance propagation is also
captured by the model. The variance of the
state estimate derives from two sources of
variance in the system: the first is the vari-
ability in the response of the arm to the
motor commands and the second is the
noise in the subsequent sensory feedback.
Initially, when the hand is in view, the state
estimate is assumed to be accurate. The
accuracy of the predictiori from the forward
model component of the Kalman filter de-
pends on the accuracy of the current state
estimate (one of its inputs). Therefore, dur-
ing the early part of the movement, when
the current state estimate is accurate, the
sensorimotor integration process weights
heavily the contribution of the forward

" model to the final estimate. However, in

the later stages of the movement, when the
current state estimate is less accurate, the
sensory feedback must be relied on to cor-
rect for inaccuracies in the forward model.
In the Kalman filter, the relative weighting
shifts from the forward model toward sen-
sory feedback over the first second of move-
ment and then remains approximately con-
stant, resulting in the asymptote of the vari-
ance propagation. In accord with the exper-
imental results, the model predicts no
change in variance under the two force
conditions.

We have shown that the Kalman filter is
able to reproduce the propagation of the
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bias and variance of estimated position of
the hand as a function of both movement
duration and external forces. The Kalman
filter model suggests that the peaking and
gradual decline in bias is a consequence of a
trade-off between the inaccuracies accumu-
lating in the internal simulation of the
arm’s dynamics and the feedback of actual
sensory information. Simple models that do
not trade off the contributions of a forward
model with sensory feedback, such as those
based purely on sensory inflow or on motor
outflow, are unable to reproduce the ob-
served pattern of bias and variance propa-
gation (13). The ability of the Kalman filter
to parsimoniously model our data suggests
that the processes embodied in the filter—
namely, internal simulation through a for-
ward model together with sensory correc-
tion—are likely to be embodied in the sen-
sorimotor integration process. We feel that
the results of this state estimation study
provide evidence that a forward model is
used by the CNS in maintaining its esti-
mate of the hand location. Furthermore,
the state estimation paradigm provides a
framework to study the sensorimotor inte-
gration process in both normal and patient
populations. The model predicts monoton-
ically increasing bias and variance, if the
afferent signal is eliminated, and under-
shoot rathet than overshoot in bias propa-
gation if the forward model is eliminated.
These specific predictions can be tested in
both patients with sensory neuropathies,
who lack proprioceptive reafference, and
patients with damage to the cerebellum, a
proposed site for the forward model (3).
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between the state of the arm and the visual coordinates
of the hand is known as the kinematic transformation [J.
Craig, Introduction to Robotics (Addison-Wesley, Read-
ing, MA, 1986)]. Therefore, once at rest the participant
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and R. Tibshirani, Generalized Additive Models (Chap-
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variance as a function of final position, movement dura-
tion, and the interaction of the two forces with move-
ment duration, simultaneously for main effects and for
each participant. Errors related to the final position fac-
tor represent movement-independent inaccuracies in
visually locating the hand and can be attributed to the
kinematic transformation, which relates the state esti-
mate of hand position to the perceived visual location.
As these static distortions of the kinematic transforma-
tion are not relevant to our study of movement-related
errors, they were factored out by the GAM fit. Athough
distance moved was correlated with movement dura-
tion (r2 = 0.35), its inclusion as an additional factor in the
model had a minimal effect on the component fits of
duration and external force.

9. The system dynamics of the hand were approximated
by adamped (coefficient ) point massm, movingin one
dimension acted on by aforceu = u,; + U, combining
both internal (int) motor commands and external (ext)
forces. Representing the state of the hand at time t as
xX(t) (@ 2 X 1 vector of position and velocity) and its time
derivative by x(f), the system dynamic equations can be
written in the general form of

x(t) = Ax(t) + Bu(t) + w(t)
where
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and the vector w(t) represents the process of white
noise with an associated covariance matrix given by
Q = E[w(t)w(t)™]. The system has an observable out-
put, the sensory information, representing the pro-
prioceptive signals (for example, from muscle spin-
dles and joint receptors). This output, y(t), is linked to
the actual hidden state x(t) by y(t) = Cx(t) + vi(t),
where the vector v(t) represents the output white
noise, which has the associated covariance matrix R
= E[v(t)v(t)"]. We represent the internal estimate of
the state at time t by X(f). We assumed that this
system is fully observable and chose C to be th®
identity matrix. At time t = O, the participant was
given full view of his arm and, therefore, started with
an estimate %(0) = x(0) with zero bias and variance;
we assumed that vision calibrates the system. At this
time, the light was extinguished and the participant
had to rely on the inputs and outputs to estimate the
system’s state. Using a model of the system A, B,
and C, the Kalman filter provides an optimal linear
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estimator of the state given by
x(t) = Ax(t) + Bult) + KOly() — Cx()]

Forward model  Sensory correction

where K(t) is the recursively updated gain matrix. This
state estimate combines an estimate from the inter-
nal model of the system dynamics together with a
sensory correction modulated by the Kalman gain
matrix K(t). We used this state update equation to
model the bias and variance propagation and the
effects of the external force. The parameters in the
simulation, B = 3.9 N's m~', m = 4 kg, and u were
chosen on the basis of the mass of the arm and the
observed relation between time and distance trav-
eled. Specifically, the total force u was chosen to be
linearly related to the average velocity under each of
the three force conditions: 1.3, 1.5, and 1.9 N, corre-
sponding to the average movement velocities of 10.8,
12.8, and 16.6 cm s~ for the resistive, null, and
assistive conditions, respectively. To end the move-
ment, the sign of the force acting on the hand was
reversed until the arm was stationary. To simulate the
overestimation of distance traveled, B was set to

[+

while both A and C accurately reflected the true
system. Noise covariance matrices of Q = 9.5 X
1075 /and R = 8.3 X 10~“/ were used, where | is
the identity matrix. This represents a standard de-
viation of 1.0 cm for the position output noise and
1.8 cm s~ for the position component of the state
noise. The parameters B, Q, and R were chosen by
trial and error to show that this model is able to
qualitatively capture the data. The increasing and
plateauing nature of the variance was robust to
changes in these parameters. This behavior is a
basic feature of Kalman filter models and was ob-
served in all the simulations run. The rate of rise and
plateau level of the variance is determined by the
relative variances Q and R. Provided B is chosen to
be larger than the true value of B, the bias shows a
typical increasing phase followed by a slow decline.
The exact rate of rise and peak of the bias depend
on the particular choice of B. However, in general,
as long as the basic components of the Kalman
filter are maintained the shapes of the simulation
plots are not particularly sensitive to the choice of
parameters.
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(1961).

Estimationbased purely on motor outflow is also known
as “‘dead reckoning.”” This uses the rate of change of a
variable, as estimated by a forward model, toupdate the
current estimate. This term derives from its usage by
sailors in navigation, who would estimate the position of
their ship at sea on the basis of their previous position,
time elapsed, and their estimated velocity over the
ground. By effectively internally modeling the ship’s dy-
namics, the sailors would leam to estimate the velocity
based on the observed heading of the ship, the sails set,
the force and wind direction, and the currents. For a
review of dead reckoning in animal behavior, see C.
Gallistel, The Organization of Learning (MIT Press, Cam-
bridge, MA, 1990), chap. 4.

This setting is consistent with the independent data
that participants tend to under-reach in pointing
tasks, which suggests an overestimation of distance
traveled [J. Soechting and M. Flanders J. Neuro-
physiol. 62, 582 (1989)].

A model based purely on motor outflow (dead reck-
oning) produces a monotonically increasing bias and
variance. Models based purely on sensory inflow
(reafference) cannot model the differential effects of
the external forces on the bias propagation.
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Fig. 1. The raw localization bias
against movement duration is
shown in (A) for all eight participants.
There are few data points for short
movement durations because of the
reaction time of stopping in re- X .
sponse to the tone. All graphs are 05 1.0 1.5 2.0 25 0 5 10 15 20 25
therefore plotted from 0.5 s. (B Time (s) Time (s)

through E) The main effect fits of the

generalized additive model to the data. The propagation of the (B) bias and (C) variance of the state
estimate is shown, with outer standard error lines, against movement duration. The differential effects on
(D) bias and (E) variance of the extermnal force, assistive (dotted lines) and resistive (solid lines), are also
shown relative to zero (dashed line). A positive bias represents an overestimation of the distance moved.
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The difference in variance propagation between the resistive and assistive fields was not significant over
the movement; the difference in bias was significant at the P = 0.05 level.
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