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Abstract

In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of
multiple sources of information, allowing perceivers to optimally interpret sensory information at
many levels of representation in real time as information arrives. Building on Rumelhart’s argu-
ments, we present the Interactive Activation hypothesis—the idea that the mechanism used in
perception and comprehension to achieve these feats exploits an interactive activation process
implemented through the bidirectional propagation of activation among simple processing units.
We then examine the interactive activation model of letter and word perception and the TRACE
model of speech perception, as early attempts to explore this hypothesis, and review the experi-
mental evidence relevant to their assumptions and predictions. We consider how well these models
address the computational challenge posed by the problem of perception, and we consider how
consistent they are with evidence from behavioral experiments. We examine empirical and theo-
retical controversies surrounding the idea of interactive processing, including a controversy that
swirls around the relationship between interactive computation and optimal Bayesian inference.
Some of the implementation details of early versions of interactive activation models caused devi-
ation from optimality and from aspects of human performance data. More recent versions of these
models, however, overcome these deficiencies. Among these is a model called the multinomial
interactive activation model, which explicitly links interactive activation and Bayesian computa-
tions. We also review evidence from neurophysiological and neuroimaging studies supporting the
view that interactive processing is a characteristic of the perceptual processing machinery in the
brain. In sum, we argue that a computational analysis, as well as behavioral and neuroscience evi-
dence, all support the Interactive Activation hypothesis. The evidence suggests that contemporary
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versions of models based on the idea of interactive activation continue to provide a basis for
efforts to achieve a fuller understanding of the process of perception.

Keywords: Perception; Interactive activation; Parallel distributed processing; Connectionist
models; Optimal perceptual inference; Neural networks

1. Introduction

One of the foundational concepts in the parallel distributed processing (PDP) frame-
work is interactive activation. Interactive activation is synonymous with the concept of
mutual constraint satisfaction: The idea is that, as a general principle, perceptual, lin-
guistic, and other mental representations arise through the bidirectional propagation of
activation among simple, neuron-like processing units. The concept was central to the
interactive activation (IA) model of letter and word perception (McClelland & Rumel-
hart, 1981; Rumelhart & McClelland, 1981, 1982) and the TRACE model of speech
perception (McClelland & Elman, 1986). In these models, the focus was on bidirec-
tional interactions between units standing for wholes and parts, such as words and let-
ters or phonemes; letters and letter features; and phonemes and their features. In these
models, individual neuron-like processing units were assigned to represent explicitly
enumerable perceptual units such as words, letters, phonemes, and features. The pro-
cessing units might be viewed as standing for populations of neurons dedicated to the
corresponding cognitive units (Bowers, 2009), but we hold a different view. In line
with the proposal of Smolensky (1986), the processing units in the model stand for
informational states encoded as alternative patterns of activity over populations of neu-
rons each of which participates in the representation of many different items (Hinton,
McClelland, & Rumelhart, 1986; Plaut & McClelland, 2010). IA models track the time
evolution and content of such states, a useful projection of the full complexity of the
underlying neural activity into what Smolensky called a conceptual representational
space, where their relationship with overt behavior such as letter, phoneme, or word
identification is easier to track.

As detailed below, the empirical motivation for interactive activation models is the
observation that, in experiment after experiment, the identification or interpretation of
any element or aspect of a visual, auditory, or other input is influenced by the identity
and interpretation of every other element or aspect of the input. Correspondingly, there
is a motivation at the level of a theory of optimal perceptual interpretation: In general,
direct sensory evidence for the interpretation of an input at any level of perceptual
description can be inconclusive when considered in isolation, and the most likely inter-
pretation of each element can only be determined when the interpretation of all ele-
ments and many sources of evidence are considered together. Indeed, a single coherent
interpretation of all elements may well be strongly determined by the totality of the
evidence, even though all of the individual elements of evidence are highly ambiguous
(Fig. 1a).
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Fig. 1. Top: A Dalmatian dog emerges from an assemblage of individually uninterpretable blotches. From
James (1965). Copyright © Ronald C. James, reprinted with permission. Bottom: The hand-written words
“went” in the first sentence and “event” in the second are identical, but they are perceived differently in the
two different contexts. From fig. 3, p. 579 of Rumelhart (1977). Copyright © Taylor and Francis Group, rep-
rinted with permission.

Beyond the domain of perception and comprehension, multiple simultaneous constraints
apply to selection of aspects of contextually appropriate actions and reconstruction of
memories, as well as many other aspects of cognition. Likewise, goals and task demands
provide additional constraints that are integrated into perception, interpretation, remem-
bering, and action, thus influencing, and often being influenced by, the outcome of pro-
cessing. Chapter 1 of the PDP volumes (McClelland, Rumelhart, & Hinton, 1986) argued
that these same considerations arise in all other areas of cognitive processing, including
action selection, problem solving, and memory.

The idea that all aspects of perception and cognition involve parallel distributed pro-
cessing in this way is an alternative to modular approaches to perception and cognition.
Interactive processing allows for the possibility that specific neurons or neural populations
in particular brain areas may be specialized to represent one or another type of informa-
tion, so a certain kind of compartmentalization of information remains. In order, however,
for all sources of information to simultaneously constrain all others, any outcome in
which a particular ensemble of such neurons is active is thought to be the consequence of
processing that is distributed across neural populations in multiple brain areas, including
neurons that represent information of many different types. Thus, for example, while
there can be brain regions dedicated to the representation of visual, semantic, auditory,
and articulatory aspects of a visually presented word, the activations of neurons in all of
the participating brain regions are taken to be mutually interdependent within the interac-
tive activation/mutual constraint satisfaction framework.
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1.1. Precursors to interactive activation models

The motivation for an interactive approach to perception and comprehension was laid
out in a paper by Rumelhart (1977). Rumelhart reviewed existing data going back to
the 19th century on the role of context in letter, phoneme, and word perception
(Fig. 1b), and on the use of a range of sources of information in resolving ambiguities
in syntactic and semantic interpretation of both spoken and written words and sen-
tences. He took the goal of perception and comprehension to be to find a joint interpre-
tation of an input at many different levels of representation, through a mutual
constraint satisfaction process guided by knowledge of the prior probabilities of alterna-
tive hypotheses and of conditional probabilistic relations between these alternatives.
Rumelhart went on to envision how a process of settling on such an interpretation
might take place. Drawing inspiration from Hearsay (Reddy, Erman, Fennell, & Neely,
1973), an early artificial intelligence model of speech perception, he envisioned a data
structure called a “message center” or “blackboard,” where estimates of the probabili-
ties of possible elements of the interpretation of an input could be “chalked in” for
inspection and adjustment by specialized experts, each working in parallel on the con-
tents of the blackboard. For example, for the case of written input, the estimate of the
probability that the letter in a particular position in a word might be the letter A might
be increased by a lexical expert that used information about a preceding C and a subse-
quent T along with lexical information that C, followed by A and T, spells the familiar
word CAT. The lexical-level CAT hypothesis might be further strengthened if the par-
ticipant has just viewed a picture containing a drawing of a cat. At the feature, letter,
and word levels, the model drew on an earlier model by Rumelhart and Siple (1974)
that relied on knowledge of word and letter probabilities and the conditional probabili-
ties of letters given words to account for data on the identification of letters in displays
of three-letter sequences.

2. The computational problem addressed by interactive activation models

The arguments laid out by Rumelhart (1977) support the following statement of the
computational challenge faced in perception and language comprehension:

Search for the most probable interpretation. Perception and language under-
standing are the process of seeking the most probable interpretation of a written
or spoken input at many different levels of representation. An interpretation,
for example, of a written or spoken linguistic expression represents the visual
or auditory features present; the letters or speech sounds; the words, phrases,
and sentences; and the meaning and syntactic structure of these items. The goal
of the process is to find the interpretation that has the highest probability
overall.
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Exploitation of prior knowledge and context. Because of the ubiquity of ambiguity
and noise, maximizing the probability of finding the correct interpretation of any
given aspect of the perceptual input depends on exploitation of prior knowledge and
information from context, including adjacent elements in the expression itself, prior
input, and input from other domains such as accompanying visual information.

Although Rumelhart (1977) did not stress it, we add the following important real-time
constraint on a model of perception and comprehension:

Real-time processing constraint. Perception and comprehension must deliver
results as quickly as possible, allowing information of all different types to influ-
ence interpretation of information of all other types as it becomes available.

Our inclusion of this constraint in the formulation of the problem of perceptual infer-
ence differs from typical computational-level formulations (Feldman, Griffiths, & Mrogan,
2009; Marr, 1982), in which only inputs and outcomes are considered, without consider-
ation of the time or processing steps required to compute the outcome. Clearly, though,
time is precious, and in a dynamic world, failure to comprehend (and act) quickly can lead
to missed opportunity and sometimes, catastrophe. Thus, achieving results as quickly as
possible in real time is part of the computational-level challenge facing the perceptual sys-
tem. Researchers coming from a computational-level starting point have begun to consider
the importance of this issue (Norris, 2013; Vul, Goodman, Griffiths, & Tenenbaum, 2014).

2.1. Human perception and comprehension as an approximation to optimal perceptual
inference in real time

The above statements characterize the computational problem a system of perception
and comprehension must solve. Our next proposition states that human perception and
comprehension mechanisms are organized to address these computational considerations:

Humans approximate optimal real-time perceptual inference. Human perceivers
approximate the patterns of behavior we would expect from an optimal system of
perception and comprehension, exploiting context and prior knowledge to guide
perception and comprehension and reflecting the influence of all sources of exter-
nal input on all aspects of the interpretation as the input becomes available in
real time.

There are limits on speed and accuracy that are imposed by the characteristics of neu-
ral hardware, affecting the extent to which humans can achieve a close approximation to
optimality. We also note that experience is required for optimization, so that speed and
accuracy both increase gradually with practice and exposure. The consequences of experi-
ence involve learning about the statistical structure of the perceptual world, tuning of
perceptual and other cognitive systems to exploit this structure, and allocation of brain
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resources (neurons and synapses) to support performance. In the present article, we focus
on perception and comprehension by skilled adults perceiving and comprehending spoken
and written input from their native language, assuming that experience-dependent optimi-
zation has already occurred.

2.2 The interactive activation hypothesis

The statement of the problem and the characterization of human performance given
above appear to be widely accepted, but several alternative approaches have been taken to
characterizing the mechanisms that allow human perceivers to succeed in exploiting con-
text and prior knowledge effectively. In this article, we consider the following hypothesis:

Interactive activation hypothesis. Implementation of perceptual and other cogni-
tive processes within bidirectionally connected neural networks in the brain
provides the mechanism that addresses the key computational challenges facing
perceptual systems, and it gives rise to the approximate conformity of human per-
formance to optimal perceptual inference in real time.

In what follows, we discuss the history of research on interactive models in perception.
We examine the early IA and TRACE models and the experimental evidence relevant to
their fundamental assumptions. We consider how well they address the computational
challenges specified above, and we consider how consistent they are with evidence from
behavioral experiments. We examine empirical and theoretical controversies surrounding
the idea of interactive processing, including a controversy that has swirled around the
relationship between interactive computation and optimal Bayesian inference. We also
review evidence from neurophysiological and neuroimaging studies of the neural basis of
perception. To anticipate our conclusions: Computational analysis as well as behavioral
and neuroscience evidence are all consistent with the Interactive Activation hypothesis.
Although there have been and will likely remain those who advocate for alternative
approaches, the evidence suggests to us that contemporary versions of models based on
these ideas have considerable merit. At the end of the article, we revisit this conclusion
and consider ways in which interactive approaches may develop in the future.

3. The interactive activation and TRACE models

Testing the IA hypothesis requires the development of explicit models that embody its
assumptions, as well as the analysis of these models to understand their properties and to
examine the extent of their ability to account for patterns in human behavior. The Interac-
tive Activation model of letter and word perception (McClelland & Rumelhart, 1981;
Rumelhart & McClelland, 1981, 1982), and its offspring, the TRACE Model of speech
perception (McClelland & Elman, 1986), represented initial steps in such a research
program, focusing primarily on modeling patterns in data.
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The IA model of letter and word perception addresses the perception of letters pre-
sented in one of four display locations, either alone or together with neighboring letters
in the other locations. Position-specific pools of neuron-like processing units are posited
at feature and letter levels, and a word level spans the array of input positions (Fig. 2a).
There are bidirectional excitatory connections between mutually consistent units in adja-
cent levels and bidirectional inhibitory connections among units within each pool. Before
presentation of a stimulus, all units’ activation values are set to a resting level slightly
below 0. External input, once presented, drives feature units, which in turn activate
consistent letter units and inhibit inconsistent letter units.' Letter units in turn activate
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Fig. 2. (a) The interactive activation model, indicating the pools of units corresponding to words, letters in
each of four positions, and features in the same positions. Excitatory connections for the word TIME and the
letters and features of this word are shown. Units within each pool are mutually inhibitory, though the inhi-
bitory connections are not drawn in. At the feature level, units are organized into pools consisting of two
units, one for the presence and one the absence of each possible feature. Reprinted from fig. 6, p. 14 of McC-
lelland (2013). Copyright ©James L. McClelland, reprinted with permission. (b) The time course of activation
of letter units in the fourth position and word units in the original version of the interactive activation model,
after presentation of the display shown below the figure. The visible segments in the last position are equally
consistent with the letters K and R, and inconsistent with other letters. At the word level, only one known
word, WORK, is consistent with the active letters in each of the four positions. This word feeds back to sup-
port the unit for K, which then dominates R in the fourth position. Reprinted from fig. 8, p. 23 of McClelland
et al. (1986). Copyright © MIT Press, reprinted with permission.
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consistent word units which compete with each other and also send feedback to support
letters consistent with possible words. An illustration of this process, as it applies to the
ambiguous input indicated in Fig. 2b, shows the time course of activation, demonstrating
how it can find the contextually most likely interpretation within a few processing cycles.
Although the featural input in the fourth position is equally consistent with R or K, only
K makes a word (WORK) with the context letters. Due to bottom-up support from active
letters in all four positions, this word becomes more active than any other word; it sup-
presses other competing word alternatives and provides top-down support for K, which
then suppresses R via competition, leading to a state in which there is a consistent inter-
pretation of the input at both the letter and word levels.

Details of the interactive activation process. We describe the details of the activation pro-
cess as it was conceived in the IA and TRACE models. These details will be relevant later
to our discussion of the relationship between interactive activation and optimal inference.
The activation process, as originally formulated (adapting proposals of Grossberg, 1978),
assigned continuously varying activation values to units for letters and words. The process
is in principle viewed as a completely continuous process, approximated in simulations as
a series of fine-grained time steps. During each time step, for each unit, its net input is first
calculated. This is the sum, over all units projecting to it, of the activation of the sending
unit times the value of the incoming connection weight from that unit, plus any direct
external input to the unit:

net; = Z[aj]+wij +e;

The strengths of excitatory and inhibitory weights were determined by separate param-
eters for feature-to-letter, letter-to-word, word-to-letter, and within-layer influences. The
notation [a;]" indicates that a unit’s activation value is only propagated if greater than 0.

Once the net input to each unit has been established, activations are adjusted as follows:

If (net;>0) : Aa; = net;(1 —a;) —d(a; —r)

otherwise : Aa; = net;(a; — m) — d(a; — r)

These equations implement a process in which a positive net input pushes activation
up toward a maximum value of 1, while a negative net input pushes activation down
toward a minimum (m), usually set to —.2 or —.3. The rightmost term in each equation
implements a restoring force sometimes thought of as corresponding to a decay or leak-
age process that tends to pull activation values toward their resting level (r); the parame-
ter d represents the strength of this tendency.

Processing in the model is completely deterministic. To address human performance in
perception experiments, where performance is probabilistic, predicted response probabili-
ties are derived by applying the Luce choice rule to a running average of the resulting
activation values, so that the probability of choosing alternative i is given by:
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For example, the probability of choosing the letter K as the identification response for
the letter in the fourth position in the display in Fig. 2a would be calculated by setting i
to be the index of the unit corresponding to the letter K in the fourth position. The index
i’ runs over all the letters in the same position, including the one indexed by i, and g is a
scaling parameter. The quantity a; corresponds to the running average activation of the
unit for the letter in question at the time when the network is interrogated. For most of
the experiments modeled in McClelland and Rumelhart (1981), this time was taken to be
the time post-stimulus onset that resulted in highest possible probability of correct
responding.

The TRACE model extends the ideas from the IA model to the processing of a stream of
speech by postulating a much larger number of position-specific feature and letter unit
arrays, as well as corresponding banks of position-aligned word units, so that there is a unit
for every feature and phoneme at each position, and a unit for every word starting at every
position. As spoken input arrives sequentially in real time, each successive time sample of
the spoken input is directed to the next input position. In this way, the same bidirectional
activation process as captured in the IA model of letter perception could be applied to the
processing of spoken inputs corresponding to one or a few words. The architecture allowed
phoneme-level and word-level constraints to be applied to sequences of input samples
regardless of where in the input stream these samples occurred. The structure of the TRACE
model should not be viewed as a literal claim about the neural mechanism. Instead, it should
be seen as a higher-level characterization capturing the relative rather than absolute con-
straints between phoneme- and word-level information: If there is a /k/ at a particular time,
it supports the word “cat” starting in the same time, and the word “ticket” starting two pho-
nemes earlier (among many other possibilities), and these constraints are captured in the
connections between units for the corresponding items in the corresponding positions.”
Activation in this array of units formed a dynamic memory trace of the results of processing
a spoken input, hence the name of the model. The architecture was inspired by the earlier
concept of the blackboard as discussed by Rumelhart (1977), and a model developed at
about the same time (McClelland, 1985, 1986) explored how neural hardware might imple-
ment these computations without the reduplication of units and connections.

4. Behavioral evidence
4.1. Empirical foci of the IA and TRACE models
The IA and TRACE models targeted letter and phoneme perception, addressing a large

body of relevant data illustrating effects of word context on recognition of letters and
speech sounds. Much of the early behavioral evidence can be summarized as explorations
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of word superiority effects: Letters are recognized more accurately when presented within
words than when presented in isolation or in random sequences of letters (e.g., Reicher,
1969). The models also addressed the ubiquitous finding that ambiguous visual and
speech inputs are likely to be identified as letters or phonemes consistent with surround-
ing lexical context (e.g., Ganong, 1980; Massaro, 1979). For example, Ganong (1980)
showed that an ambiguous sound between /k/ and /g/ was more likely to be identified as
/k/ in an “_iss” context (where it fits to form the word “kiss”) and as /g/ in an “_ift” con-
text (where it fits to form the word “gift”). The advantage for letters in words also
extended to letters in pronounceable, word-like pseudowords (such as LEAT or TOVE,
McClelland & Johnston, 1977). The IA model of word perception provided a novel
account of the mechanism by which letters in pseudowords like LEAT were perceived
more accurately than letters in unword-like non-words (e.g. LTAE) or single letters pre-
sented without context; in the model, the pseudoword advantage occurred through the
partial activation of units for words sharing several letters with the presented input. Such
items are called neighbors of the given input. These word units then fed back support to
the units for the constituent letters, many of which are partially supported by activations
of several different words (Fig. 3). Newman, Sawusch, and Luce (1997) demonstrated
neighborhood effects in identification of ambiguous speech segments, consistent with this
account. The IA model predicted that letters in unpronounceable strings that nevertheless
had many word “neighbors” (e.g., the “L” in SLNT) would show as much facilitation as
letters in comparable pronounceable strings (SLET), and an experiment reported in
Rumelhart and McClelland (1982) confirmed this prediction.

CAVE MAVE

activation

TIME TIME

Fig. 3. Activations at the word level produced by CAVE and MAVE in the interactive activation model.
Activations of all units whose activation exceeds 0 at any time during processing are shown. Activation
traces are offset spatially with those reaching higher maximal activations starting behind and to the right. In
the case of MAVE, several words contribute top-down support to the presented letter in each of the four-
letter positions. From fig. 13, p. 396 and fig. 9, p. 393 of McClelland and Rumelhart (1981). Copyright ©
American Psychological Association. Reprinted with permission.



J. L. McClelland et al./Cognitive Science 38 (2014) 1149

The bidirectional interactive processing in the IA and TRACE models predicts that
context effects can occur for contextual elements that come after a target input element,
as well as for elements that come before the target. This prediction was tested and con-
firmed in experiments that separately manipulated the duration of each context letter and
examined its effect on the recognition of target letters in each letter position (Rumelhart
& McClelland, 1982). In general, all context letters influence accuracy of perception of
each target letter. Similarly, lexical effects on phoneme recognition occur for word-initial
as well as embedded or word-final phonemes (Ganong, 1980; Warren, 1970), and the
effects extend to contextual information in subsequent words in some studies (Sherman,
1971; Warren & Warren, 1971). Of course, if perceivers in a phoneme identification task
are required to respond too soon after an ambiguous segment, subsequent context has lit-
tle effect (Fox, 1984), and this was captured in simulations using the TRACE model. A
wide range of additional phenomena in speech perception, including lexically based seg-
mentation of a stream of spoken sounds into words and the perceptual magnet effect
(Kuhl, 1991), were also addressed by the TRACE model.

Evidence of human conformity to the real-time processing constraint. One of the moti-
vating phenomena leading to the development of the TRACE model was evidence sup-
porting the view that word identification occurs in real time during speech perception.
Marslen-Wilson and colleagues were the first to focus on this point, showing that identifi-
cation occurs very shortly after a spoken input becomes uniquely consistent with a single
possible word (Marslen-Wilson & Welsh, 1978). A large body of subsequent work exam-
ining eye movements during spoken word-to-picture matching tasks further supported the
general principle that context and stimulus information mutually constrain processing in
real time. Several of these studies include both non-linguistic visual input as well as spo-
ken auditory input, as envisioned in the 1977 paper by Rumelhart. The initial experiments
using this method showed that visual context influenced the immediate interpretation of a
syntactically ambiguous prepositional phrase (Chambers, Tanenhaus, & Magnuson, 2004;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). Subsequent studies also
showed that syntactic and semantic expectations can also constrain which lexical candi-
dates are considered. For example, Dahan and Tanenhaus (2004) showed that participants
rule out possible target objects upon hearing a verb (such as “climb”) that rules out some
of the objects as potential objects of the action named by the verb (e.g., a watch). Criti-
cally, these contextual influences became evident very soon after the constraining infor-
mation was presented (Dahan & Tanenhaus, 2004; Magnuson, Tanenhaus, & Aslin, 2008)
and were continuously updated as new information became available. This was demon-
strated particularly clearly by Allopenna, Magnuson, and Tanenhaus (1998) in a study
that showed that about 200 ms after word onset—the minimum required to plan and exe-
cute an eye movement—Ilisteners were already more likely to fixate objects whose names
matched the initial consonant and vowel of the word. Furthermore, their results showed
that word candidates that did not match an input’s onset could still become activated if
supported by enough subsequent phonological input, consistent with the idea of a set of
candidates whose activations are continuously updated in light of ongoing input. Many of
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these papers simulated their findings using the TRACE model or simplified models based
on similar assumptions (Spivey & Tanenhaus, 1998).

4.2. Evidence of the generality of context effects

Word context effects on recognition of letters and phonemes have served as a major
focus for research on interactive processing, but the principle is very general and recurs
across many different domains of perception and cognition. For example, just as in word
recognition, there is a tendency for phonological errors in speech production to result in
existing words rather than non-words, and such effects are well explained by interactive
models of speech production (Dell, 1986; see also Dell, Schwartz, Martin, Saffran, &
Gagnon, 1997; Rapp & Goldrick, 2000).

Interactive processing also plays an important role in visual object perception. Just as
in the word advantage effects, perception of an ambiguous color can be biased by object
context (Hansen, Olkkonen, Walter, & Gegenfurtner, 2006; Kubat, Mirman, & Roy,
2009). For example, an ambiguous color halfway between yellow and orange is perceived
as more yellow in the context of a school bus and as more orange in the context of a car-
rot. Furthermore, paralleling a result from Elman and McClelland (1988) discussed
below, Mitterer and de Ruiter (2008) showed that object-context feedback can recalibrate
color categories. The well-known illusory contours phenomenon in Kanizsa figures (Kan-
izsa, 1979; Fig. 4) demonstrates that a simple figure context can even induce the percep-
tion of contours that are completely absent from the input, as expected from interactive
activation.

e
/. A\

Fig. 4. Illusory contours in the Kanizsa triangle. Image source: Kanizsa triangle, Wikimedia Commons,
http://en.wikipedia.org/wiki/File:Kanizsa_triangle.svg. Copyright © Wikipedia Commons. Reprinted under the
GNU Free Documentation License.
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Moving to higher level phenomena, it has been clear for many years that context
affects the resolution of lexical ambiguity, as Rumelhart (1977) predicted. There are mod-
els of such effects that restrict context effects to a post-access selection process (Swinney,
1979), but interactive models predict that if the context is sufficiently constraining, then
it could constrain which meanings of an ambiguous word are initially activated (e.g.,
Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982) and even cause pre-activation
before the input is presented (McClelland, 1987). Eye-tracking studies have revealed such
anticipatory effects in language processing in adults (e.g., Altmann & Kamide, 1999;
Magnuson et al., 2008; see also the Dahan & Tanenhaus, 2004 study mentioned above)
as well as infants (e.g., McMurray & Aslin, 2004). Electrophysiological scalp recordings
(ERP) also suggest that words can be pre-activated by sentence contexts (van den Brink,
Brown, & Hagoort, 2001; DeLong, Urbach, & Kutas, 2005).

The study of context effects has focused on how perception of elements such as letters
or phonemes (or edges or colors) is affected by their immediate context (e.g., words or
objects). However, processing is also affected by other contextual factors, including task
instructions and relative probability of different types of stimuli. For example, lexical
context effects are reduced when the proportion of non-words in a block of trials in a
perceptual experiment is relatively high. Specifically, if the non-word proportion is high,
the speed advantage for recognition of phonemes in words compared to non-words is
reduced (Mirman, McClelland, Holt, & Magnuson, 2008), the word bias in speech errors
is reduced (Hartsuiker, Corley, & Martensen, 2005), the short-term memory advantage
for words over non-words is reduced (Jefferies, Frankish, & Ralph, 2006), and there is an
increase in regularization errors in reading words that have inconsistent letter-sound map-
pings (e.g., reading “pint” to rthyme with “mint”; Monsell, Patterson, Graham, Hughes, &
Milroy, 1992). These results can be interpreted as reflecting reduced activation of lexical
(or possibly semantic) representations so that representations of words are less active and
consequently have a smaller feedback effect (for implementations of these effects within
TRACE, see Mirman et al., 2008).

The modulation of processing through attention can be implemented in networks of
bidirectionally connected processing units—that is, interactive activation networks. One
example of such a model is the model of attentional modulation of processing in the
Ericksen flanker task (Cohen, Servan-Schreiber, & McClelland, 1992). In this model,
units standing for different spatial locations are bidirectionally connected with units for
features in these locations, and these units are, in turn, bidirectionally connected with
position-independent units of the alternative possible target letter identities. Directing
attention to a location is thought to arise from top-down activation of the unit standing
for that spatial location; this enhances the activation of units for features in the corre-
sponding position, giving them an eventual upper hand in subsequent processing, but
allowing activations from inconsistent flankers nevertheless to retard identification of the
item in the target location (as is observed in experiments, for example, Gratton, Coles,
Sirevaag, Eriksen, & Donchin, 1988). Although some implementations of the Cohen et al.
model have simplified the architecture such that not all connections are bidirectional, we
take it as a given that attention to locations and stimulus features involves a bidirectional
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propagation of activation such that salient inputs, as well as goals and task demands, can
participate in determining the focus of attention (Phaf, Van der Heijden, & Hudson,
1990). Furthermore, a recent model of interactive engagement between dorsal (action)
and ventral (object) processing systems illustrates how interactive processing can facili-
tate the simultaneous identification of two or more objects present in a display at the
same time (Henderson & McClelland, 2011).

Finally, we note that interactive activation processes may also play an important role
in memory (Kumaran & McClelland, 2012; McClelland, 1981). A cue (such as an indi-
vidual’s name) can activate a representation of the item in memory, and this in turn can
activate known features of the item, which then, through recurrence, activate other similar
items. These items then in their turn can fill in additional features that are then attributed
to the cued item. This use of interactivity extends similarity-based generalization models
to cases in which relevant items in memory do not overlap with the cue (the individual’s
name may be unique) but do overlap on other dimensions that are brought into the
computation via recurrent, interactive computation.

5. Interactive processing and optimal perceptual inference

While the above indicates some of the empirical support for the IA and TRACE mod-
els and demonstrates that the applicability of the principle of interactive activation
extends beyond the domain of perception, it does not explicitly address the question of
the relationship between the IA model and optimal perceptual inference. The topic has
been the source of a heated critique in the literature on visual and auditory context effects
(Massaro, 1989; Massaro & Cohen, 1991; Norris & McQueen, 2008; Norris, McQueen,
& Cutler, 2000). The papers just cited argue that interactive processing will distort per-
ception away from the pattern that is both seen in behavioral data and expected if infor-
mation integration is consistent with principles of Bayesian inference, and that interactive
activation causes undue contextual influence, producing, for example, inappropriate
“hallucination” of lexically consistent phonemes.

It is ironic that the IA hypothesis would face such critiques, given that Rumelhart’s
early ideas about context effects on perception (Rumelhart, 1977; Rumelhart & Siple,
1974) were explicitly formulated in terms of probabilistic, Bayesian inference. Further-
more, the “hallucinatory” perception of contextually consistent phonemes observed in the
models is, for us, exactly what the model should produce, both from the point of view of
optimal performance in natural contexts and from the point of view of accounting for the
findings in human perception. Consider what happens when a brief noise burst occurs
coincident with the production of a phoneme in a spoken sentence. Listeners are likely to
perceive (perceptually restore) the correct speech sound in such cases, even when the
noise replaces the sound rather than being played over it (Samuel, 1981; Warren, 1970).
The perception of the phoneme is in some sense a hallucination, but in a natural context,
the inference that the speaker has produced the contextually appropriate sound is far more
likely to be correct that the inference that he suspended his speech for the exact duration
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of the noise burst. In general, exploiting context to determine what we hear is more likely
to lead us to hear what was really said, except in experiments where natural probabilistic
contingencies can be broken.

It is true, however, that in developing the interactive activation model, Rumelhart and
McClelland (1981, 1982) and McClelland and Rumelhart (1981) gave no explicit consid-
eration to a probabilistic formulation of the problem of perception per se, drawing instead
on the non-probabilistic, neurally inspired processing models proposed by Grossberg
(1978, 1980) without considering whether this formulation corresponded exactly to opti-
mal probabilistic inference. In retrospect, this appears to have led to unfortunate misun-
derstandings and needless controversies that we hope to put to rest in the present article.
Specifically, subsequent research on interactive activation models supports two key
points:

1. The IA and TRACE models, in their original formulation, did not provide an exact
implementation of a principled Bayesian computation; indeed, the initial formulation
of these models did distort these computations, in ways that deviate both from opti-
mality and from human data.

2. However, variants of the models that retain their essential interactive character are
consistent with Bayesian principles and can capture data that were problematic for
the original formulation.

Regarding point (1), flaws in the original IA and TRACE models are discussed in
McClelland (1991). There, it was observed that the activation assumptions of the model
together with the assumptions about the translation of these activations into response
probabilities produced patterns of choice responses that deviated from Bayesian probabi-
listic models and from human choice responding. These deviations occurred even in the
absence of any interactivity in processing: That is, they occurred even when two sources
of bottom-up information were combined to determine the activation of units standing for
possible choice alternatives. Thus, the shortcomings of the original model may not have
been a consequence of interactivity per se.

Here, we consider point (2) above in more detail. Specifically, we describe how a vari-
ant of the IA model called the multinomial interactive activation (MIA) model (Khaitan
& McClelland, 2010) operates according to Bayesian principles of perceptual inference,
considering the case of a display containing a sequence of four letters, as in most of the
experiments modeled by the original IA model. A fuller treatment of the probabilistic
principles and their relationship with computations in artificial networks is provided in
McClelland (2013), and that article should be consulted by those interested in the details
behind the briefer presentation here.

The MIA model draws heavily on insights brought into research on artificial neural
networks by Hinton and Sejnowski in the form of the Boltzman Machine, first presented
in a conference proceedings paper describing how such a machine could perform optimal
perceptual inference (Hinton & Sejnowski, 1983), and subsequently described in the PDP
volumes (Hinton & Sejnowski, 1986). We begin by describing the relevant ideas from
the original Boltzmann machine.
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5.1. States, their goodness, and their probability in the Boltzmann machine

In Boltzmann machines, units take on binary activation values (0 or 1). Units (which
we index with the subscripts i and j) are thought of as corresponding to perceptual predi-
cates about a sensory input (e.g., the input contains a particular line segment at a particu-
lar location, or it signals the presence of a particular object at some location). A
consequence of using binary activation values is that it makes it relatively easy to con-
sider, not only unit-by-unit probabilities but also the probability of different overall states
of the network. Each state S, corresponds to a specific pattern of [0, 1] values over all of
the units, and each state has a Goodness G, corresponding to how well the state satisfies
the graded constraints encoded in the connection weights (w;;) among active units (a; and
a;) and the bias terms associated with the units (b;). Weights can be thought of as encod-
ing probabilistic constraints between pairs of predicates, and biases can be thought of as
encoding prior probabilities of individual predicates, in ways we will make precise for
the MIA model below. The goodness of a state is defined as

G, = § Wiid:d; § a:b;
fi3 P> i ./+ : Vi
i

The subscripts i and j run over all units in the network, and the notation i > j simply
indicates that the connection between a pair of units, which is assumed to be symmetric
(w; = wj;) is only counted once in measuring goodness. The goodness is greater when the
bias terms on active units are more positive and when the weights between active units
are more positive.

When performing perceptual inference in a Boltzmann machine, some of the units may
be forced or clamped into specified O or 1 values, corresponding to a sensory input pat-
tern, while the activation values of the remaining units are set by a probabilistic updating
process. The resulting states of these unclamped units are thought of as a possible inter-
pretation of the sensory input. In the original Boltzmann machine, this updating process
consisted of a sequence of updates, each of which involved selecting an unclamped unit
at random. Indexing this unit as unit /, we then set its activation depending on its net
input, net; = Zj ajw;; + b;, where j runs over units with connections to unit i. Once the
net input is computed, the units’ activation is set to 1 with probability

1
S
or to 0 with probability 1-p,. T is a parameter called temperature, determining how
strongly the activation is constrained by the unit’s net input.

If this process is allowed to iterate for a sufficient number of updates, the probability
that the network will be in any particular state S, is equal to the exponential function of
the goodness of the state scaled by the temperature, divided by the sum of corresponding
quantities for all possible states (indexed by '), including state 7
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Here, a possible state is any state in which all the clamped units have their clamped
values; each such state is one of the possible patterns of binary activation values over all
of the remaining, unclamped units in the network. Since the sum over all the states in the
denominator is the same no matter which state we are considering, we can express this
relationship by saying that the probability of a state is proportional to the exponential
function of the goodness of the state scaled by the temperature:

p(Sy) o %7,

5.2. Generative model of the knowledge embodied in the IA model

The multinominal interactive activation model encodes specific probabilistic con-
straints in the biases and connections among units in a slight variant of the Boltzmann
machine. Our next step is to define the probabilistic knowledge that we will be encod-
ing in the network. We adopt a specific hypothetical formulation of the probabilistic
knowledge that might underlie a perceiver’s (implicit) beliefs about the process that
might produce the arrays of visual input features in a letter perception experiment. This
knowledge has the form of a probabilistic generative model. The concept of a genera-
tive model is a useful tool for characterizing the probabilistic structure of an environ-
ment and of the information reaching the sensory surface from the environment, and
also as a hypothetical abstract characterization of the knowledge a perceiver uses in
performing perceptual inference. Although the phrase was not used to describe it, a
simple generative model lies at the heart of signal detection theory (Green & Swets,
1966): According to this theory, perceivers are thought to receive signals selected from
either a signal plus noise distribution or a noise alone distribution. The parameters of
the model are the probabilities of signal plus noise versus noise alone, and the means
and standard deviations of each of the two distributions. Signal detection theory pro-
vides a theory of optimal perceptual inference in this situation. The generative model
we offer here for letter displays is a bit more elaborate, but similar in spirit. It is very
similar to the formulation of the beliefs about the probabilistic structure of letter dis-
plays used in the model of Rumelhart and Siple (1974), although these authors did not
use this terminology.

According to our generative model, the feature array that reaches a perceiver’s eye is
generated by first selecting a word w; at random from the possible words in a target lexi-
con (here, a set of English words that are all four letters long), with a probability p(w;)
monotonically related to the word’s language frequency. Once a word is selected, a
sequence of letters is generated probabilistically based on the word. The probability of
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generating letter j in position k given that word i was selected is represented p(lylw;).
With high probability (assumed to be .9 in our simulations), the letter in each position is
the correct letter for the given word, but there is a small probability that one of the other
letters of the alphabet may be generated instead (given that the correct letter’s probability
is .9, the probability of each of the other letters is .1/25, or .004). Letters, in turn, give
rise to a specification of presence or absence values for each of a set of possible letter
features treated (following Rumelhart & Siple, 1974) as line segments (Fig. 5). For exam-
ple, the letter T specifies that line segments should be present across the top of the corre-
sponding feature array and down the middle of the array, and that other possible line
segments that could occur in a feature array should be absent. Generation of feature val-
ues from letters and/or their registration by the perceptual system is also treated as proba-
bilistic. Specifically, for a given letter position k, the probability of generating value v
(which can be present or absent) for feature dimension f given letter j is represented
pally). The probability of generating the correct value of a given feature is relatively
high (.9 in our simulations), and the probability of generating the incorrect value is equal
to one minus this high value (.1).

Given the generative model above, it is possible to calculate the probability of every
possible path through the generative model, where a path consists of a choice of one
word, a choice of one letter in each position in the word, and a choice of one value (pres-
ent or absent) for each feature in each letter position. We use the notation P, to represent
a particular path, using the same subscript © that we used previously for the states of a
Boltzmann machine. This usage is appropriate, since patterns of activation in the MIA
model will correspond to paths through the generative model.

The probability of a particular path P,, represented p(P), is simply the product of the
probabilities of each of the individual probabilistic events assumed to underlie the crea-
tion of the path according to the generative model:

HBLIEFGHI
JKLEMNOPAR
STUVWXYZ

X

Fig. 5. The letters A—Z as they are represented in the Rumelhart & Siple font, with the full set of features
shown in a single block below the letters. From fig. 2, p. 101 in Rumelhart and Siple (1974). Copyright ©
American Psychological Association. Reprinted with permission.
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p(Pz) = p(wi) H (p(ljk’Wi) H(Vﬂc’ljk)> :

3 f

5.3. Perceptual inference under the generative model

The problem of perceptual inference (for our case) is to take a set of specified fea-
ture values {V} and infer which of the possible paths consistent with this set of feature
values gave rise to it. The possible paths are all the paths that have the given set of
specified feature values. There is one such path for each combination of one word and
one letter in each position (in the model, there are 1,179 possible words, and 26 possi-
ble letters per position, for 1,179 x 26, or approximately 540 million such paths).
The probability of path m given the specified feature values, represented as p(P.|{V}),
is called the posterior probability of the path. The posterior probability of path P, is
given by

p(PﬂHV}) :p(Pn)/Zn,p(Pﬂ')7

where the summation in the denominator runs over all possible paths consistent with the
specified feature values {V}.

In principle, we could calculate the probability of each such path, given the set of
observed features, and choose the one that is most likely to have generated the observed
features under the generative model. The multinomial IA model does not carry out this
explicit calculation. Instead, the model samples from the set of possible activation states
S corresponding to possible paths through the generative model. While the model does
not always sample the most probable state, it has the following property: The more prob-
able a state is under the generative model, the more likely the state is to be sampled. We
shall make this statement more precise below.

5.4. The MIA model: Using interactive activation to sample from the posterior
distribution of the generative model

We now describe the MIA model and explain how it can sample from the correct pos-
terior probability distribution over alternative possible interpretations of the set of speci-
fied feature values produced by the generative process above, where an interpretation
corresponds to a path, specifying one word and one letter in each position.

As in the original IA model, the model (shown in Fig. 2) contains a unit for each pos-
sible word; a unit for each possible letter in each of four positions; and a unit for each
possible value (present or absent) of each feature (e.g., horizontal across the top) of each
of the four input feature arrays.> Units are organized into pools corresponding to sets of
mutually exclusive alternatives. One pool consists of the set of units corresponding to the
possible words and four other pools correspond to the sets of units for each of the possi-
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ble letters in each of the four-letter positions. There are also four sets of 14 pools of units
at the feature level: Each of these pools contains a “present” and an ‘“absent” unit for a
specific feature in a specific letter position.

The MIA model replaces the original model’s pair-wise inhibitory connections between
units in the same pool with the constraint that only one unit in a pool can be active at
one time. Under this constraint, each pool now corresponds to a multinomial random var-
iable—a variable that can take one of n alternative values, where n corresponds to the
number of units in the pool. This is the feature of the model that gives rise to the word
“multinomial” in its name. (Dean, 2005 proposed such a scheme in his computational
model of neocortex; see also Lee & Mumford, 2003). Like the mutual inhibition assump-
tion in the original model, the mutual exclusivity assumption in the MIA model is consid-
ered to be an idealized, conceptual-level consequence of the local inhibitory circuitry
found throughout the brain; it plays a role similar to the role of the mutual inhibition
between units in the same pool in the original model. This way of treating inhibition is
similar to the divisive normalization model proposed by many modelers (e.g., Grossberg,
1978) and used by neuroscientists to model neural responses in visual cortex (Heeger,
1992).

In the MIA model, the probabilistic information that characterizes the generative model
described above is used explicitly to set the bias terms and connection weights of the net-
work. For reasons discussed below, the biases and weights correspond to logarithms of
the relevant probabilistic quantities. Specifically, bias weights are assigned to each word
unit. The value of the bias weight b; on the unit for word i is set equal to In(p(w;)), that
is, the natural logarithm of the probability that word i would be sampled by the genera-
tive process described above (in what follows, the word “logarithm™ always refers to the
natural logarithm). The connection weight between each word unit w; and each letter unit
Ly for letter j in position k is set to In(p(lylw;)), the logarithm of the probability that the
letter would be generated given that word i was the word selected by the generative
process. Similarly, the connection weight between the unit for letter j in position k and
the feature unit for each of the two possible values of feature f in that position is set to In
(P(valli)), the logarithm of the probability that the feature would be generated under the
generative model, given that the letter had been generated.

In summary, the MIA model embodies in its connection weights a logarithmic transfor-
mation of the probabilistic information in the generative model described above. If the
model’s knowledge exactly corresponded to the logs of the probabilities in a generative
model that actually produced the displays used in a particular experiment, its outputs
could be related to the true probabilities of events in the world that generated these
inputs. Alternatively, we can think of the model as representing subjective estimates of
these probabilities as they are employed by perceivers. In that case, to the extent that
there are differences between the knowledge embedded in perceivers’ perceptual systems
and the true statistics of the world, perception that would be optimal with respect to the
estimates might be non-optimal with respect to the statistics of the real world.

For the sake of our present goal of demonstrating that the multinomial IA model can
sample from the posterior of the probability distribution defined by the generative model,
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we consider a case in which the present or the absent values of a subset of the features
of a presented letter string are specified by an external input. For the example in Fig. 6,
none of the features in the first position were specified, whereas the features in the sec-
ond, third, and fourth positions were the features of the letters O, O, and D, respectively.
According to the generative model (bars labeled calculated probability in the figure), the
letters that form words with the context (F, G, H, M, and W) are all fairly likely; differ-
ences among them mostly reflect differences in the values of p(w) for the associated
words (FOOD, GOOD, HOOD, MOOD and WOOD).*

5.5. Processing in the MIA model

As in the Boltzmann machine, feature specifications are presented to the model by
turning on the unit corresponding to the value of each specified feature. Processing begins
with feature units clamped as specified above, and with no units active in any of the letter
pools or in the word pool. Processing takes place over a number of cycles, similar to the
random updating process in the Boltzmann machine. However, in our case the cycle is

angobabiIity of Letters in Context _OOD

[Jcalculated Probability
[ 1Sampled Probability
0.2
Z 0.15
g
E 0.1
o
0.05
mmmm MomMmMOMMomillmmm

0
ABCDEFGHI| JKLMNOPQRSTUVWXYZ
Letter

Fig. 6. Comparison of directly computed posterior probabilities and the results of the Gibbs sampling process
in the multinomial interactive activation (IA) model, for letters in the first position of a four-letter display. The
figure shows the calculated posterior probability of each possible letter in the first position of a four-letter
array, following the presentation of a display in which no feature values are specified in the first position fol-
lowed by full specification of features of the letters O, O, and D in the second, third, and fourth positions,
respectively. The gray bars represent the calculated Bayesian posterior probabilities for the first letter position.
These probabilities reflect the lexical knowledge embodied in the generative model. For this calculation, p(/lw)
was set to .9 for the correct letter in each position of the word, and .1/25 for each of the other possible letters,
and p(fll) was assumed to be .9 for the correct value of each feature of each letter, and .1 for the incorrect
value. The white bars represent the sampled probability that each of the letters in the first position was active
after 50 iterations of the multinomial IA model. The weights in the model were set to correspond to the loga-
rithms of the probabilities used for the Bayesian calculation, as described in the text. A total of 10,000 simu-
lated trials were run for 100 iterations. Results are mean probabilities averaged over iterations 51-100. Slight
differences between sampled and calculated probabilities are within the range of sampling error.
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not random (although this detail is not critical for the functioning of the model, it makes
discussion of the meaning of the computation somewhat simpler). Within a cycle, activa-
tions are first determined for each of the four-letter pools, using the existing activations
at the feature and word levels; then activation is determined for the word pool, using the
activations in each of the four-letter positions as well as the bias weights associated with
each of the word units. Determination of activation in each pool begins by calculating
each unit’s net input, based on the weights, biases, and activations of other units as usual.

As previously stated, the model differs from the original IA model and indeed
the original Boltzmann machine in that, at each time step, only one letter unit in
each position and only one word unit may be active; the active unit is chosen
probabilistically using the softmax function, so that, for each unit within the pool, the
probability that a unit is chosen depends on the exponential function of its own net
input divided by the corresponding quantities for all the units in the pool (itself
included):

eneli /T
plai=1) = S enen /T
7

Here, i and /' index the units in the pool being updated and T corresponds to tempera-
ture as in the Boltzmann machine. The softmax function can be viewed as an extension
of the logistic function used in the Boltzmann machine, where the logistic function sets
the activation of a single unit into either the on or the off state, while the softmax func-
tion sets a multinomial random variable into one of its n alternative states, in which
exactly one of the units in the pool is active.

Let us now consider the relationship between this computation and sampling from the
posterior probabilities of possible letters, given a set of observed features. For specificity,
consider the computation of the activation for the pool of units corresponding to the letter
in the second position of a four-letter display, on the first cycle of activation, when no
units are active at the word level. In this case, the sending units are units corresponding to
values of features in the second letter position, the receiving units are the units for possible
letters in the second position of the string, and the weights are the connection weights
between the letter and feature units, each of which corresponds to the log of the probabil-
ity of the particular value of the feature (present or absent) given the letter. Noting that the
activation of a sending unit is equal to 1 for the unit corresponding to the specified value v
of feature f, and that there are no bias terms specified at the letter level in the model, the
expression for the net input to letter unit j in position k can be rewritten as

net = > In(p(valli))-

f

Now, when we compute ¢"“%* for use in the softmax function to compute the probabil-
ity of activating the unit, this expression turns into [[, p(vx|li), the probability that we
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would have generated the observed values of the features from the given letter, under the

generative model.” Plugging these values into the softmax function, we see that it is
equivalent to:

(HfP(kaij)) .
;(pr@ﬂc‘lj/k)) .

plag =1) =

For the case where T = 1, this equation corresponds to Bayes’ formula for the poster-
ior probability of letter j, given the values of the features (McClelland, 2013).° In that
case, the softmax function will choose a letter to activate with a probability equal to the
posterior probability of the letter given the specified features. If T is unequal to 1, these
probabilities will be taken to the 1/T power, then renormalized. As stated before, we can
express this more compactly as

1/T
a]k = 1 (H P ka|l]k )

5.5.1. The roles of logs and exponentials in linking neural and probabilistic computation

The reader may be tempted to ask at this point why we have bothered with using the
logarithms of probabilistic quantities in defining the strengths of the connection weights
in the MIA model network, since we then proceed to undo this logarithmic transformation
when we exponentiate the net input to a unit for use in the softmax function (see note 5)
or the closely related logistic function. Indeed, it would be possible to reformulate the
MIA model, directly using the prior probabilities of words and the conditional probabili-
ties of letters given words and of features given letters, and then redefining the activation
function accordingly. The reason for using the logs of these probabilistic quantities is
based ultimately on the inspiration from neuroscience that continues to lie behind the
MIA model and other neural network models, and on the previous history of models link-
ing neurons to computation. The MIA model traces its lineage through a marriage of the
original IA model, a descendent of an earlier model of Grossberg (1978), with the Boltz-
mann machine, a descendent of the earlier model of Hopfield (1982). Ultimately, these
models can in turn be traced back through the Perceptron (Rosenblatt, 1958) to the
McCullough-Pitts neuron (Pitts & McCullough, 1947), a device that added up weighted
signals and compared them to a threshold. The idea that neurons additively combine
excitatory and inhibitory signals, and then fire when a threshold is reached, is, or course,
the standard intuitive simplification of a model neuron relied on by neuroscientists. In the
presence of a source of additive Gaussian noise in the inputs to such a simplified model
neuron, the probability of firing will closely match the logistic function of the summed or
net input. Thus, the McCullough-Pitts neuron with noise added to its input turns out to be
a closely approximate implementation of the logistic neuron used in Boltzmann machines,
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which in turn implements Bayes’ rule if the weights and bias terms are set to the logs of
the appropriate probabilistic quantities, as Hinton and Sejnowski (1983) were the first to
point out (see McClelland, 2013, for further discussion of a possible neural basis for the
softmax function).

Returning to the main thread of our development, we now consider the net input to
each unit at the word level. In this case, the net input consists of the bias term represent-
ing the log of the subjective probability of the word, plus the sum of terms corresponding
to the product of the activation of each letter level unit, times the weight between the
word unit and the letter unit. From the first step in the computation described above, one
letter unit in each position has an activation value of 1, while all other letter units’ activa-
tion values are 0, so the net input to word unit i becomes

net; = In(p(w;)) + ZIH(P(ij\Wi))
k

where [ represents the active letter unit in position k. Now, computing ¢", we obtain

the probability, under the generative model, that the word would be chosen for presenta-
tion, times the probability that the active letters would have been generated, given that
the word had been chosen. Putting this into the softmax function, we obtain

p(ai=1) o (plw) [T, pltalwd)

Expressing this in words, the probability that a given word unit is chosen to be the
only one active is proportional to the prior probability of occurrence of the word,
times the probability that the word would have generated the set of active letters.
Again, this implements the basic logic of Bayes rule for calculating a posterior proba-
bility that a particular word was presented, in this case given prior information (repre-
sented by p(w;)) and the likelihood of evidence (in this case the active letters) given
the word.

Finally, let us consider the activation of a unit j in any one of the letter pools on the
next cycle, when there is a single-word unit active at the word level. The net input to
each letter level unit is the same as before, but with an extra term corresponding to the
log of the probability of the letter, given the active word. Once this expression is expon-
entiated, it corresponds to the probability of the letter given the active word, times the
probability of the set of specified features, given the letters. The expression for the proba-
bility that a given letter j will be activated in position k is

plag = 1) (plabe) [T plonli))

Thus, after the second update of letter level activations, the probability that a given let-
ter unit in each position is chosen to be the active unit in that position is proportional to
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the probability of the letter, given the active word, times the probability of the set of fea-
tures in the given position, given the letter, scaled by 1/7.

Note that the weights between word and letter units and between letter and feature
units were defined in terms of the top-down, generative process that is treated as underly-
ing the creation of the displays. The letter-to-feature weights are used in computing bot-
tom-up input from feature to letter units and the word-to-letter weights are used in
computing the bottom-up input from the letter to the word units. The word-to-letter
weights are also used to compute the top-down influences from the word units to the let-
ter units, and, although we do not consider it here, the letter-to-feature weights could be
used to fill in missing feature-level activations. Thus, the same connection weight values
are used symmetrically, in both directions, even though their values are those specified in
the top-down generative model. Because the weights are used symmetrically, the model
shares an essential characteristic with the Boltzmann machine: The activation updates
tend to move the states of the network in the direction of states of higher overall
goodness.

In summary, given the order of processing specified above, and running with 7 =1,
the probability that a given letter unit will be active in a given position will correspond
to the probability of the letter given the features under the generative model. When the
word level is first updated, a single word will be chosen with a probability proportional
to the probability of the word given the chosen letters. Thus, our calculation will produce
a sample from the possible states of the underlying generative model that could have pro-
duced the observed features. However, our estimates of the probabilities of the letters
have not yet taken the word-level information into account. The next update at the letter
level does take the word-level information into account, so that, for each letter position,
the probability that a letter unit will be active is equal to the probability of the letter,
given both the active word and the given array of features.

It might seem that the computation is complete at this point, but the probabilities of
letter activations after the second update at the letter level do not exactly match their cor-
rect posterior probabilities. However, as the sampling progresses through additional cycles
alternating between updates and the word and letter levels, the activation probabilities
converge toward the correct posterior probabilities. The sampling procedure is a general-
ization to the multinomial case of the procedure used in the Boltzmann machine to set
activation states. Like the Boltzmann machine sampling procedure, our procedure is an
instance of Gibbs sampling (Geman & Geman, 1984), a widely used procedure that origi-
nated in statistical physics, where it has been shown to provide unbiased samples from
the posterior of a probability distribution by making local updates of individual variables
consistent with the conditional distribution of these individual variables given the current
values of other variables (see McClelland, 2013, for details). This is exactly what we are
doing in the MIA: We are sampling states of the letter units, conditional on states of the
word and feature units; and we are sampling states of the word units, conditional on
states of the letter units and feature units (although the feature units only affect the word
units indirectly, via the states of the letter units).
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5.6. Probabilities of states of the MIA model and pathways through the generative model

If we sample states of the MIA model at some temperature 7, the probability that we
will be in a given state after an initial “burn-in” period is equal to e0%)/T where the
goodness is defined as it was above. For the specific case of the MIA model, the
goodness becomes

G(Sz) = In(p(wi) + ) <lnp(ljk|wi) +) 1np(ka|ljk)>
k 7

exponentiating this expression, we obtain:

eG(Sn) :p(wl) H< ]k|wl H ka|l]k )
f

k

The expression on the right is the probability, under the generative model, that the path
through the generative model underlying the observed set of features is the one that cor-
respond to state S;. Plugging this into the probability-goodness equation, we see that the
model visits such states with probability proportional to the temperature-scaled probabil-
ity that they actually generated the observed features:

p(sz) ( wi Hk( /k|Wi)HfP(V/k|ljk)>>l/T

or more simply
p(Sz) o< p(P| (VD)

The temperature parameter 7 has both an overt and a covert role in the behavior of the
model. Overtly, when T is very high, all states become equiprobable, whereas when T
becomes very low, only the states with the highest posterior probability have any apprecia-
ble chance of being sampled by the network after the “burn-in” period. However, if the net-
work is run at a very low temperature, the burn-in period becomes exceedingly long. The
approach initially suggested for the Boltzmann machine was to use simulated annealing,
whereby T starts high and is gradually reduced. Instead of this, in the simulations we have
conducted with the MIA model, we have run the model at a fixed temperature 7" = 1. In this
case, we have found that the network achieves the correct posterior probability distribution
in less than 20 cycles, and the approximation is quite good within about 10 cycles.

5.7. Making overt responses based on the state of the model

The development thus far shows how an interactive neural network can sample from
the posterior of the probability distribution over entire states of a neural network. These
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states are samples from the joint distribution of assignments of both letter and word iden-
tities that could have given rise to the actual features present in the network’s input.
Should we be interested in determining the identity of a particular item—say, the letter in
a given position, as in many visual word recognition studies, or the whole word, as in
many other studies—we can observe that the probability of being in a state where the
unit in question is active (regardless of the activations of other units) corresponds to the
correct posterior probability of the item. In other words, the network’s states are simulta-
neously samples from the marginal distribution of each of the multinomial variables and
the joint distribution of all of these variables. This is exactly what Rumelhart (1977)
envisioned as the outcome of interactive processing in perception.

To generate a response that is a sample from this distribution, say about the identity of
the letter in the first position of a word, a perceiver would only need to report the identity
of the letter that had been selected through the iterative settling process. Simulations of
the model verify this mathematical fact; one example illustrating this is shown in Fig. 6
(see caption for further explanation).

5.8. Sampling as an approximation to optimality

We have described a model in which perception involves sampling from the posterior
of the generative model characterizing the stimuli presented to the perceptual system. It
should be noted here that the truly optimal policy would be to choose the alternative with
the highest posterior probability, rather than sample alternatives in proportion to their rel-
ative probability, the policy we follow in the model by setting the temperature parameter
T to 17. Alternatively, however, we can see the temperature parameter as reflecting intrin-
sic processing noise in the perceptual system. In that case, we can see each trial in a per-
ceptual experiment as an attempt to find the single best interpretation subject to the
prevailing level of noise. In either case, the higher the temperature, the more random
behavior will be. The advantage of higher temperature is that it allows fuller exploration
of the range of possible perceptual interpretations and avoids premature commitment
early in a computation.

In Boltzmann machines, optimal perceptual interpretation is made possible by gradu-
ally reducing temperature, but this policy is only guaranteed to find a global optimum
after an infinite time. In view of the real-time constraint, sampling at a fixed intermediate
temperature may be the compromise the brain adopts as its approximation to optimal
perceptual inference in real time.

5.9. Perceptual facilitation in non-words in the MIA model

As we noted earlier, an important feature of the original IA model was the fact that it
accounted for the facilitation of perception of letters in pseudowords, such as MAVE, as
well as for facilitation of perception of letters in words. In the original model, this
occurred because a non-word could partially activate several words that shared letters in
common with the string presented. At first glance, it might be supposed that the MIA
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model would not show the same pattern, since only one word is active at a given time.
To explore this, we considered the ambiguous displays in Fig. 7, where the letter in the
second position is partially occluded but occurs either in a word, in a pseudoword, or by
itself. The available features are equally consistent with the letters A and H in the Rumel-
hart-Siple font used to represent letters in the simulation. Can the model successfully use
context to resolve the ambiguity, selecting A as the more likely alternative, even if the
ambiguous segment occurs in a pseudoword context?

To address this question, simulations with each of the three displays shown in the fig-
ure were conducted. For the single letter alone case, the word level was switched com-
pletely off, as a baseline for assessing the influence of the word level in the other two
contexts. The results are shown in Fig. 7. As the figure indicates, in the absence of con-
text (white bars), the alternatives A and H are both chosen about half of the time, since
the feature values specified are maximally consistent with both of these alternatives. With
either context, the letter A becomes far more likely than the letter H. This occurs to a
greater extent when the first position contains a C than when it contains an M, but it
occurs to a considerable extent in both cases.

Effect of Context on Letter Identification
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Fig. 7. Probability that different letters are activated in the second letter position when an ambiguous charac-
ter equally consistent with A or H is presented in different contexts (black bar: C_VE; gray bar: M_VE;
white bar: no context). In the generative model based on the Rumelhart-Siple font, both A and H are equally
likely to generate the features shown, and the letter P is next most likely. But when the context is C_VE or
M_VE, A is far more likely. The M_VE context supports the letter O to some degree, but the feature infor-
mation is unlikely under the hypothesis that the letter is O, so overall O is much less likely than A.
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Why does the model tend to choose the letter A in both contexts? When the rest of the
letters form the word CAVE, the entire display is far more likely to have been generated
by CAVE than any other word, and thus the letter A is far more likely to have been the
letter in the second position than the letter H. When the first letter is M, no single word
is highly likely to have generated all of the observed features. In fact, the word MOVE is
overall more likely than any other single word (although it is inconsistent with some of
the features in position 2, it is consistent will all of the features in all of the other posi-
tions). However, many other words, including CAVE, GAVE, HAVE, SAVE, and
WAVE, as well as MADE, MAKE, MALE, MARE, and MATE, are all partially consis-
tent with the full set of features. Each of the words listed is sometimes sampled at the
word level; when MOVE is sampled, the model can choose O as the letter in the second
position, but it can also choose A or H, since these letters can occasionally be generated
according to the generative model when the underlying word was MOVE. When one of
the words containing A in the second position is sampled, it almost always chooses A as
the corresponding letter.®

5.10. The MIA model exhibits logistic additivity, addressing a limitation of the original
IA model

We have seen that, in the multinomial IA model, if settling occurs at a fixed tempera-
ture 7 = 1, exact matching of posterior probabilities according to our generative model
can be obtained. Do human perceivers also match these posterior probabilities? Since it is
hard to obtain independent evidence of the subjective probabilities involved, the tendency
has been to determine whether or not perceivers are combining context and stimulus
information according to the functional form we would expect if they were performing
optimally. Interestingly, there is a simple functional form that arises in the multinomial
IA model and other stochastic variants of the IA model for the way in which a factorial
manipulation of stimulus and context information should affect the probability of choos-
ing a particular alternative (McClelland, 2013; Movellan & McClelland, 2001): It is easy
to show (for a subset of these models, including the multinomial IA model) that the
logit of the probability of making a particular response (where logit(p) is defined as In
(p/(1—p)) a quantity also known as the log-odds) should correspond to a sum of two
quantities, one due only to the stimulus (corresponding to the relative probability of the
sampled features given the item) and another due only to the context (corresponding to
the relative probability of the item given the context).

logit(p;) = s; + ¢

An additional term b; can be included to incorporate a bias associated with the alterna-
tive’s prior probability. This relationship (which Movellan and McClelland called logistic
additivity) holds at least approximately in the data from many studies investigating the
joint effects of context and stimulus information (see Movellan & McClelland, 2001 for a
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review; see Pitt, 1995 for one exception). The multinomial IA model exhibits logistic
additivity, and its tendency to do so is unaffected by the value of the temperature param-
eter (7): T can be thought of as scaling the magnitudes of the stimulus and context terms
in the model’s predictions, but it is not in general separately identifiable from the data.

As Massaro (1989) noted in his early critique of the original IA and TRACE models,
these models did not capture the logistic additivity seen in the data from many experi-
ments, and this failure was the basis for his conclusion that interactivity fundamentally
distorts perception; similar concerns have contributed to the criticisms offered by Norris
et al. (2000) and Norris and McQueen (2008). While the original model’s assumptions
did distort this relationship, the problem was not in fact due to interactivity: As men-
tioned above, the influence of multiple sources of input failed to exhibit logistic additivity
under the activation functions used in the original models even when propagation of acti-
vation was strictly feed forward (McClelland, 1991). In any case, logistic additivity is
observed in the MIA model, overcoming this limitation of the original model.

It is important to note that logistic additivity is observed in a number of other variants
of the IA model (McClelland, 1991, 1998; Movellan & McClelland, 2001); in particular,
it is not necessary to assume the unit activations are binary. Although the result is harder
to prove mathematically for such cases, it has been demonstrated to hold in simulations.
The variants that exhibit logistic additivity incorporate variability in the input to the
model and/or intrinsic to processing within the model.

5.11. Interim summary

It is hoped that the exposition of the MIA model makes clear that interactive activation
produces a good approximation to optimal perceptual interpretation in real time, in accor-
dance with the IA hypothesis, and that the MIA model (along with other variants of the IA
model) can capture the logistic additivity pattern seen in data. This does not mean, of
course, that the MIA model is the best possible model of human perceptual processing or
even that interactivity is a part of the process of perception. Indeed, critics have argued that
interactivity is not necessary to achieve a good approximation to optimality, leading them to
argue for models in which processing is unidirectional. We now turn to consider this issue.

6. Is it advantageous for influences to feed back into the perceptual system?

A number of authors have proposed that context effects on letter or phoneme identifi-
cation can be adequately explained by relying only on feed-forward processing, with inte-
gration of stimulus and contextual information occurring at a subsequent, decision stage
(e.g., Massaro, 1989; Norris & McQueen, 2008; Norris et al., 2000; Paap, Newsome,
McDonald, & Schvaneveldt, 1982). A post-perceptual decision level that integrates per-
ceptual and contextual information can explain how stimulus and lexical information
affect letter or phoneme identification (Fig. 8a). Thus, these authors have argued, interac-
tive activation is of no benefit, and it need not be incorporated into models of perception.
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Fig. 8. (a) Massaro’s schematic representation of the integration of stimulus and context information accord-
ing to his Fuzzy Logical Model of Perception, reprinted from fig. 1, p. 401 of Massaro (1989). Copyright ©
Elsevier Ltd, reprinted with permission. The A and V variables in Massaro’s figure correspond to the stimulus
and context variables presented in the text. (b) Schematic diagram indicating a unidirectional propagation of
information for computing the contextual and stimulus factors used in Massaro’s model for the identification
of the segment in the middle position of a three-phoneme syllable. (c¢) The architecture of the MERGE model
of speech perception (Norris et al., 2000), reprinted from fig. 11, p. 384 of Norris and McQueen (2008).
Copyright © American Psychological Association, reprinted with permission.

We argue that there are two important ways in which interactive activation can be ben-
eficial:

1. It implements optimal perceptual identification over many representational levels
and at many positions within a level at the same time.

2. It allows the consequences of these processes to be available inside the perceptual
system itself, thereby allowing for the possibility of knock-on consequences for pro-
cessing of other inputs or for processing the same item on later occasions.

We consider these points in the next two sections.
6.1. Implementing optimal inference over many levels and positions simultaneously

To underscore the first advantage of an interactive approach, we contrast it with
the approach proposed by Massaro (1989), who has advocated strictly feed-forward
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computation for the integration of context and stimulus information in perception. Similar
points apply to the approach favored by Norris and collaborators (Norris & McQueen,
2008; Norris et al., 2000), as we shall discuss below.

Massaro’s model focuses on the perceptual identification of a single specified target
item. For example, in one experiment (Massaro & Cohen, 1983) of the type considered
by Massaro, the target item was the second speech sound in a monosyllable beginning
with either /t/, /s/, /p/, or /v/, and ending in the vowel /i/ (‘ee’). Seven different sounds
were presented in each context, between the initial consonant and the vowel, organized
on a continuum from /1/-like to /r/-like, for a total of 28 distinct stimuli in all. Each stim-
ulus was presented many times to each participant, with the task of identifying the second
segment as either /1/ or /1/.

From a Bayesian point of view, one could propose that perception depends on calculat-
ing an estimate of the posterior probability that a given input is /r/ or /l/, using both stim-
ulus and context as sources of constraining information. This can be done by calculating,
for each context ¢, the quantities p(ric) and p(llc); and also by calculating for each stimu-
lus s, the quantities p(slr) and p(sll). The correct posterior for p(rls,c) is then given by:

Sole) PP
’ |

p(slr)p(rle) + p(slp(llc)

Massaro’s model (Fig. 8a) assumes that participants calculate quantities corresponding
to normalized estimates of the probabilistic quantities in the above formulation.® Notably,
the representation of context used in the calculation described above excludes the stimu-
lus information from the second segment; the first and last segments specify the context,
while the second provides the stimulus information used in the calculation.

The information encoded in the connection weights in a three-phoneme-slot processing
system could be used to calculate the terms needed for Massaro’s model, although we
would then be using this knowledge in a feed-forward, rather than an interactive fashion
(Fig. 8b; although arrows go up and down in this figure, each arrow goes in only one
direction, and there are no feedback connections). The featural information in the first
and last positions would be used to calculate p(plf) for each possible phoneme in the first
and last positional slots; then, at the word level, one can calculate p(wl{p,},{p3}) for each
word in the lexicon, relying as before on the assumptions of our generative model (the
expression {p;} denotes the vector of p(plf) values for all possible phonemes in position 1,
and similarly for {p3}). The quantity p(rlc) can now be calculated as the sum over all
words of the probability of the word given the input in the first and last position, times
the probability of r in the second position given each word, and similarly for p(/ic). This
corresponds to using the connection weights between the phoneme and word units in one
direction in the first and last position, and in the opposite direction in the second position,
as illustrated in the figure. The desired quantity p(rls,c) is then calculated by combining
the lexical input with the bottom-up stimulus support calculated for the phonemes in the
second position and then using the above equation. This calculated probability is then
used to generate the r response with probability p(rlc,s) or the [ response with probability
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p(lle,s) =1 — p(rlc,s). An alternative, sampling-based approach that would produce r
responses with the same probability would proceed by selecting a single phoneme in
positions 1 and 3, based on the feature input to these positions; then selecting a single
word based only on these phonemes; then selecting between r and [ for the middle posi-
tion based on the selected word and the feature input in the second position. In either
case, the calculations are unidirectional, and contextual and stimulus support for the
target item are calculated separately, as Massaro’s model proscribes.

We can now contrast Massaro’s feed-forward proposal with the interactive activation
approach, in which a bidirectional computation is applied across all positions, as previ-
ously described. In Massaro’s model, the computations outlined above are only valid for
calculating the posterior probability of the phoneme in the second position. This may not
seem problematic when considering the experimental paradigm used by Massaro and
Cohen (1983), where the target was always the phoneme in the second position (See
Fig. 8b). However, in most experiments on the perception of letters in words, including
the experiments of Reicher (1969), Massaro and Klitzke (1979), and nearly all of the
experiments addressed by the IA model, participants are not cued prior to the trial on
which letter will be the target letter. For these cases, the multinomial IA model simulta-
neously samples from the correct Bayesian posterior in all four positions. Furthermore,
the MIA model uses the same representation at the word level both as its sample from
the distribution of possible words and as the basis for constraining perception of each
possible letter. For Massaro’s model, the context representation for each position excludes
the bottom-up information from that position, and thus is an incomplete representation of
the information relevant to the identification of the word. In short, for an input containing
three letters, four different word-level quantities are needed, one for word level, and one
for each letter position.'®

Feed-forward computation in MERGE and related models. An approach very similar to
Massaro’s is advocated by Norris and colleagues in their models of perceptual processing
of words and letters or phonemes (Norris & McQueen, 2008; Norris et al., 2000). Just as
in Massaro’s model, the correct feed-forward calculation of the necessary top-down con-
straints for each letter or phoneme is different for each item at a lower level (e.g., for
phonemes in each position, the lexical context must be based on the phonemes in all
other positions). In particular, when considering the role of context on identification of a
target segment (e.g., the effect of the first two segments in job on the identification of the
final segment, see Fig. 8c), bottom-up information about the target segment is not
allowed to affect values at the word perceptual level until after the top-down influence
from the first two segments has been combined with the target segment information in
the phoneme decision layer (D. Norris, personal communication, July 2011). This would
be difficult to implement, since information about speech segments overlaps in the spoken
input. The difficulty is compounded when we consider the effects of subsequent context,
as in the classic experiment of Ganong (1980), where the target segment is the first seg-
ment in a word context — a /g/ or /k/ followed by “iss” or “ift,” or in experiments where
disambiguating context occurs in a subsequent word (Warren & Warren, 1971). To
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explain this effect, segments subsequent to the target segment must be allowed to affect
the word level, but the target segment must be prevented from doing so. In interactive
models, this complication is unnecessary. Context phonemes in all positions can affect
processing of each phoneme in each position simultaneously, with decisions about each
being updated as information becomes available, either about prior or subsequent ele-
ments of the input.

In summary, non-interactive models in the psychological literature have not addressed
the simultaneous use of context and stimulus information at multiple levels and multiple
positions within a level. They have tended to focus on joint use of context and stimulus
information in identifying a specified target item at one level of processing, without deal-
ing with the fact that in natural perceptual situations, the goal is to simultaneously inter-
pret multiple items at many different levels of processing. In contrast, interactive models
allow representations of alternatives at different levels and different positions within a
level to mutually constrain each other in an integrated parallel, distributed, and interactive
computation.

6.2. Knock-on consequences of interactive processing

We now consider the second advantage of interactive models over feed-forward mod-
els: Interactivity allows effects of context to affect subsequent processing within the per-
ceptual system. Such effects include effects on processing of neighboring items present in
the immediate context of a presented item, and effects on processing of similar inputs on
subsequent occasions.

Knock-on consequences for neighboring input items. A case of the first type was consid-
ered by Elman and McClelland (1988). They focused on a phenomenon in speech per-
ception known as compensation for coarticulation (Mann & Repp, 1981; Stephens &
Holt, 2003): The perceptual system seems to compensate for the effects that articulation
of one phoneme has on the acoustic realization of neighboring phonemes. For example,
the lip formations associated with /s/ and /[/ (“sh”) persist into the articulation of subse-
quent stop consonants like /t/ and /k/, shifting the frequency content of the successor.
Perceivers compensate for this, allowing more accurate recognition of the successor.
Thus, when an ambiguous sound between /t/ and /k/ is preceded by /s/, it will tend to
be heard as /k/; when preceded by /[/, it will tend to be heard as /t/. In this situation,
the presence of background noise or articulatory variability could obscure the identity
of the preceding fricative sound, robbing a strictly feed-forward system of information
to allow compensation. But if that fricative sound occurred in a lexically constraining
context, and feedback were allowed to influence the activation of the contextually more
likely fricative, compensation could nevertheless occur, improving identification of sub-
sequent phonemes. Elman and McClelland (1984) included a mechanism for producing
such compensatory effects in one version of the TRACE model, simulating the lexically
mediated compensation for coarticulation effect.
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Elman and McClelland (1988) subsequently designed an experiment to determine
whether lexical context could trigger compensation for coarticulation, as the TRACE
model predicted. They presented ambiguous /t/ or /k/ sounds preceded by an ambiguous
fricative sound halfway between /s/ and /[/. In turn, the ambiguous fricative was preceded
by one of two different lexical contexts, one consistent with /s/ (e.g., “Christma_"") and
one consistent with /[/ (e.g., “fooli_"). If lexical information feeds back to influence pho-
neme processing, then the ambiguous fricative in “Christma_" should behave like an
acoustic /s/ and cause a shift in the perception of the following phoneme toward /k/. Con-
versely, the same ambiguous fricative in “fooli_” should behave like an acoustic /[/ and
cause a shift in the perception of the following phoneme toward /t/. This is precisely what
Elman and McClelland found. Although this result has been questioned (Pitt & McQueen,
1998), it has been replicated in multiple different laboratories, and with different sets of
materials (Magnuson, McMurray, Tanenhaus, & Aslin, 2003; Samuel & Pitt, 2003).
Those who favor non-interactive approaches have, however, presented recent evidence
further contesting the source of the effect (McQueen, Jesse, & Norris, 2009), and research
on the topic continues.

Knock-on consequences for processing similar inputs on subsequent occasions. Other
researchers have explored other knock-on effects of lexical context on phoneme identifi-
cation that are also predicted by the interactive account. One such effect has been demon-
strated using selective adaptation, a domain-general phenomenon in which repeated
presentation of a particular stimulus causes a perceptual shift such that neutral stimuli are
perceived as being less like the repeatedly presented stimulus. In the case of speech per-
ception, after repeated presentation of a phoneme (e.g., /s/), perception of an ambiguous
phoneme (e.g., halfway between /s/ and /[/) is shifted toward the alternative interpretation
(in this case, /[/; e.g., Samuel, 1986; Samuel & Kat, 1996). To demonstrate lexically med-
iated selective adaptation, a neutral sound (an ambiguous phoneme or a noise burst) was
repeatedly presented in lexical contexts that were consistent with only one interpretation.
If the neutral sound was presented in /s/-biased contexts such as “bronchiti_”, “arthriti_”,
etc., the selectively adapted representation was /s/; if it was presented in /[/-biased con-
texts such as “aboli_”, “demoli_”, etc., the selectively adapted representation was /[/
(Samuel, 1997, 2001). Thus, the lexical information determined which sublexical repre-
sentation was selectively adapted, influencing subsequent phoneme and word identifica-
tion.

A third example of knock-on consequences of lexical feedback—one that was pre-
dicted in the McClelland and Elman (1986) TRACE model paper—is lexically guided
tuning of speech sound categories. Such tuning is essential for listeners to be able to cor-
rectly identify different speakers’ productions, since phoneme category boundaries vary
between individuals. For example, speakers of English and Spanish center their /b/ and
/p/ categories at different points along a dimension called voice onset time. Furthermore,
regional dialects are often distinguished by differences in details of both consonant and
vowel production. Lexical information provides a ready source of information for tuning
speech perception in response to such shifts in speech sounds, and several studies

L3
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beginning with Norris, McQueen, and Cutler (2003) now indicate that such tuning does
in fact occur in speech perception (van Linden & Vroomen, 2007 showed an analogous
shift in use of visual cues from the lips; for a review see Samuel & Kraljic, 2009). The
pre-lexical locus of this effect is supported by evidence that the tuning effect generalizes
to influence perception of words not used in the induction of the effect (McQueen, Cutler,
& Norris, 2006). In TRACE, lexical information feeds back to influence pre-lexical pho-
neme unit activations, and Mirman, McClelland, and Holt (2006) augmented TRACE
with a simple Hebbian learning rule to adjust the feature to phoneme connections, allow-
ing it to simulate the relevant experimental findings.

More generally, Friston (2003; see also Spratling & Johnson, 2004) has argued that top-
down feedback is necessary to learn the hierarchical representations that are found
throughout perceptual and cognitive systems, and indeed some form of feedback is used in
many different neural network learning algorithms. Proponents of autonomous/feed-for-
ward accounts of perception acknowledge the necessity of feedback for learning but insist
that this feedback is not equivalent to the “online” feedback that influences processing in
interactive activation models (e.g., Norris et al., 2003). We argue that a system in which
feedback can guide learning as well as perception provides a parsimonious account. Fur-
thermore, if feedback guides learning, then the learned representations will necessarily
reflect a combination of bottom-up and top-down information, making the representations
themselves both consequences of and intrinsic to their roles in interactive processing.

In sum, feedback not only allows contextual constraints to determine the identity of
elements (such as letters and phonemes) of larger units (such as words) but also allows
the results of this contextually determined identification process to influence processing
of neighboring elements (compensation for coarticulation) and subsequent occurrences of
the same elements (adaptation, retuning). Knock-on consequences of feedback provide
both motivation for and evidence of direct top-down feedback in perception.

7. Neural basis of interactive processing
7.1. Basic neuroscience findings

Evidence from research on the neural basis of perception supports the presence of
interactive processing in the brain. Interactive processing is supported by a basic feature
of brain architecture: Wherever in the neocortex there is a “forward” path from area A to
area B there tends to be a strong (sometimes much stronger) return pathway (Felleman &
van Essen, 1991). Many studies correspondingly show that reversible inactivation of puta-
tively higher level or downstream cortical areas (e.g., higher level visual or auditory cor-
tex) affects stimulus-driven activity in primary areas (e.g., Hupé et al., 1998; Carrasco &
Lomber, 2010), implicating reciprocal interactions in cortical processing. Neural record-
ings in rhesus monkeys indicate that the same “edge detectors” in V1 that respond to
physically present edges also respond to illusory edges in Kanizsa figures. The illusory
contour response in V1 was found to occur later than the response in V2, suggesting that
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the response in V1 was due to feedback from higher level visual processing (Lee &
Nguyen, 2001). Similarly, binocular rivalry appears to be a mutual constraint satisfaction/
interactive activation process with neurons in many different visual areas, from V1/V2 to
inferotemporal cortical areas, showing consistency with the global percept (Leopold &
Logothetis, 1999). Evidence of bidirectional propagation of activity between occipito-tem-
poral and pre-frontal brain areas is also seen in human magneto-encephalography (MEG)
studies of visual object recognition (e.g., Bar, 2004).

In addition to top-down feedback from higher levels within a processing modality, neu-
rophysiological studies have shown cross-modal interactions between primary regions of
perceptual processing (see Ghazanfar & Schroeder, 2006 for review). To us such mutual
constraints between modalities are just as much examples of the fundamental principle of
mutual constraint satisfaction as the bidirectional interactions between levels in a hierar-
chical perceptual system. Although several studies have argued that sensory integration
occurs in secondary sensory or association cortex (Bavelier & Neville, 2002; Jones &
Powell, 1970) or in frontal cortex (Rizzolatti, Riggio, Dascola, & Umlita, 1980), recent
evidence has pointed to the presence of top-down inputs from these association regions to
primary sensory cortices in audition (Cappe & Barone, 2005; Schroeder et al., 2001) and
vision (Falchier, Clavagnier, Barone, & Kennedy, 2002; Rockland & Ojima, 2003) as
well as direct input from auditory cortex to primary visual cortex (Falchier et al., 2002;
Hall & Lomber, 2008) and vice versa (Bizley & King, 2009). Physical projections from
auditory cortex terminating in area V1 have also been observed in the monkey (Falchier
et al., 2002; Rockland & Ojima, 2003) and in the adult cat (Hall & Lomber, 2008), sug-
gesting that these connections are not limited to early developmental stages. In addition,
evidence from multiunit recordings in the ferret has shown that roughly 20% of the neu-
rons in area Al respond to visual stimulation (Bizley & King, 2009).

Overall, a growing body of evidence is challenging the idea that there is encapsulation
of sensory processing at the neural level (see Ghazanfar & Schroeder, 2006). Instead, the
evidence suggests that a highly interactive biological system enables the simultaneous use
of information across hierarchical levels from multiple modalities for spatial localization,
communication, and various social behaviors (Lewkowicz & Ghazanfar, 2009). This
interactive neural system implements cognitive processing that relies on the simultaneous,
coherent engagement of representations at many levels and within many modalities at the
same time—that is, processing that is distributed, parallel, and interactive.

7.2. Interactivity in the brain mechanisms of human language processing

Interactive processing has also been a key theme in research on human language pro-
cessing and reading. Much of this work has been conducted within the framework of the
“Triangle model” of single-word reading (Seidenberg & McClelland, 1989; and subse-
quent extensions), which can be viewed as a version of the interactive activation model
that relies on learned distributed representations rather than localist representations of
units at the orthographic, phonological, and semantic level. Here, we highlight the
interactive processing aspects of the framework as illustrated in Fig. 9, focusing on the
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timing and locus of mutual influences of phonology and orthography and of lexical
effects on phonological and orthographic processing. Note that in the triangle model
framework, bidirectional connections throughout the model are sensitive to lexical knowl-
edge as well as knowledge of the patterns of covariation between orthographic and pho-
nological representations. Specifically, the presentation of a visual or spoken word form
would induce bidirectional interactions among orthographic, phonological, and semantic
representations, leading to the prediction that lexical knowledge and spelling-sound con-
sistency would affect orthographic and phonological representations, at least in skilled
readers, once the relevant connections had become strengthened through experience.
Discussions of the neural basis of visual word recognition have focused heavily on the
role of a region of the left occipito-temporal cortex known as the Visual Word-Form
Area (VWFA; McCandliss, Cohen, & Dehaene, 2003; Dehaene, Cohen, Sigman, & Vinc-
kier, 2005). Some have argued that VWFA functions as an orthographic “input” lexicon,
a repository for visual forms of words (Kronbichler et al., 2004, 2007), while others have
contended that this region is prelexical in nature (Dehaene et al., 2005), with some possi-
ble hierarchical organization of orthographic representations in or near the VWFA. In an
interactive framework, a representation can be structured orthographically and still be
sensitive to lexical constraints and influences from other input modalities. That is, we can
consider the VWFA to be the approximate neural analog of the pool of units labeled
“orthography” in the triangle model, which primarily represent orthographic structure but
are also sensitive to interactive influences from other representations. A considerable
body of evidence supports the view that processing in this region is susceptible to
influences from other input modalities, including influences arising from tactile (Braille)

MAKE ImAk/

Fig. 9. The triangle model framework for single-word reading. Reprinted from fig. 1, p. 526, of Seidenberg
and McClelland (1989). Copyright © American Psychological Association, reprinted with permission.
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input for congenitally blind patients (Buchel, Price, Frackowiak, & Friston, 1998; Cohen
et al., 1997) for handwriting (Barton, Fox, Sekunova, & laria, 2010) and for auditory word
processing (Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006; Cone, Burman,
Bitan, Bolger, & Booth, 2008; Desroches et al., 2010). As important, studies that have
looked at the influence of consistency between a word’s spelling and its sound have
revealed graded effects of consistency and frequency at the item level mirroring the behav-
ioral findings of consistency effects in naming (Bolger, Hornickel, Cone, Burman, &
Booth, 2008; Bolger, Minas, Burman, & Booth, 2008; Graves, Desai, Humphries, Seiden-
berg, & Binder, 2010). Consistent with predictions from the Triangle model (Harm, Mc-
Candliss, & Seidenberg, 2003), Bolger, Hornickel, et al. (2008) and Bolger, Minas, et al.
(2008) found that response to grapheme—phoneme consistency in the VWFA increased with
reading skill. These findings support the view that interactive processing becomes estab-
lished as reading skill becomes more and more automatic; this is captured in the triangle
model framework in terms of the strengthening of bidirectional connections between the
neurons participating in each of the three different types of representations with experience.
Neuroimaging studies of speech perception have also addressed the predictions of inter-
active models. Whereas accuracy of phonological perception is associated with the supe-
rior temporal cortex, decision time is associated with inferior frontal/insula cortex (Binder,
Liebenthal, Possing, Medler, & Ward, 2004) and anterior cingulate/medial frontal regions
of cortex (Grinband, Hirsch, & Ferrera, 2006; Grinband et al., 2011). Interactive models
predict that brain regions involved in phonological processing (e.g., posterior superior tem-
poral gyrus and Heschl’s gyrus in the superior temporal sulcus) should show effects of lex-
ical bias. In contrast, autonomous decision-level integration models predict that these
lexical bias effects should be limited to brain regions involved in decision-making and
response selection (e.g., inferior frontal gyrus and anterior cingulate gyrus). An fMRI
study (Myers & Blumstein, 2008; see also Guediche, Salvata, & Blumstein, 2013) found
that the lexical bias on categorization of ambiguous phonemes was associated with
increased activation in the superior temporal gyrus. This region is also activated during
auditory hallucinations of voices in patient populations (Dierks et al., 1999) and imagined
speech of others in healthy individuals (McGuire, Silbersweig, & Frith, 1996).
Electrophysiological measures have provided key evidence that lexical and consistency
effects occur early, during perceptual and/or lexical processing, rather than during a post-
perceptual decision stage, in both visual and auditory modalities. For example, rhyming
effects on visual processing of orthographically dissimilar words have been detected
around 260 ms after stimulus onset (Kramer & Donchin, 1987), and syllable effects in
visual word processing have been shown at around 250-350 ms (Ashby & Martin, 2008;
Carreiras, Ferrand, Grainger, & Perea, 2005). Consistency effects in auditory lexical deci-
sion tasks (Perre, Midgley, & Ziegler, 2009; Perre & Ziegler, 2008) and semantic catego-
rization tasks (Pattamadilok, Perre, Dufau, & Ziegler, 2008;Pattamadilok, Morais, De
Vylder, Ventura, & Kolinsky, 2009) have been shown to occur in ERP roughly 300—
350 ms post-stimulus and time locked to the point of inconsistency. Findings from MEG
imaging, which provides greater spatial resolution, have localized the early rhyming
effects in visual tasks to the left occipito-temporal region (Wilson, Leuthold, Lewis,
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Georgopoulos, & Pardo, 2005). In related work, van Linden and colleagues (van Linden,
Stekelenburg, Tuomainen, & Vroomen, 2007) found that lexical context induced an early,
perceptually based mismatch negativity effect, suggesting that lexical information directly
affected perceptual processing stages.

Although neuron-level neuroanatomical precision is difficult to achieve in the domain of
human language processing, recent studies combining multiple imaging modalities show
promise for increasing both spatial and temporal precision. A study combining MEG and
electro-encephalography (EEG) with anatomical MRI (Gow, Segawa, Ahlfors, & Lin, 2008)
found reactivation of posterior superior temporal gyrus following activation of a region
associated with lexical processing (supramarginal gyrus). An ERP study (Molinaro, Duna-
beitia, Marin-Gutiérrez, & Carreiras, 2010) found that during an early period (180-220 ms
after onset) letter-like numbers in word contexts (e.g., M4T3R14L) were processed more
like numbers than letters, but only slightly later (250-300 ms after onset) this pattern
reversed and letter-like numbers were processed more like letters than numbers. A com-
bined ERP-MEG study (Sohoglu, Peelle, Carlyon, & Davis, 2012) replicated the facilitative
effect of prior knowledge (written text) on perceptual clarity of degraded speech and found
that this effect was reflected in inferior frontal gyrus activity before superior temporal gyrus
activity, consistent with top-down feedback from higher level processing in the inferior
frontal gyrus modulating perceptual processing in the superior temporal gyrus.

The exact nature, timing, and location of lexical and consistency effects in visual and
auditory word perception remains subject to a range of interpretations, and a considerable
body of ongoing work is addressing these issues. One very general open question is
whether top-down and between-modality influences should be viewed as an additional
sources of constraint on interpretation, as in the interactive activation framework, or
whether, instead, top-down signals should be viewed as predictions that are compared with
bottom-up signals, generating error signals that then drive learning mechanisms (Friston,
2008; Mumford, 1992; Rao & Ballard, 1999). A further question is the interplay between
such influences and synchronization of neural activity within and across brain regions (see
Gotts, Chow, & Martin, 2012 and commentaries therein for a recent discussion).

There appears to be little doubt that top-down influences affect relatively early, modal-
ity-specific processing areas, both in language processing and in other tasks. Brain
regions tend to be connected bidirectionally and there is strong neurophysiological evi-
dence that these bidirectional connections implement interactive activation in perceptual
and conceptual processes (Ghuman, Bar, Dobbins, & Schnyer, 2008; Gotts et al., 2012).
Specifically within the domain of language processing, the neural evidence indicates that
feedback and audio-visual interactions directly influence perceptual processing, consistent
with interactive models.

8. Summary and future directions

Over the course of this article, we have laid out the case for interactive activation and
mutual constraint satisfaction in perception and cognition. We have focused primarily on
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visual and spoken word recognition, the target phenomena first addressed by IA models,
but we have also considered other applications of interactive approaches. We have
explored computational theory-level considerations and neuroscience evidence as well as
evidence on the role of context in perception as revealed by behavioral studies.

We have argued that interactive activation addresses key computational challenges fac-
ing perceptual systems and is consistent with a wide range of evidence, including behav-
ioral and neuroscience evidence on the mechanisms of perception and language
processing in the brain. Overall, it appears that both computational analyses and the
behavioral and neuroscience evidence are consistent with the IA hypothesis.

While the computational and empirical considerations seem strongly to support an
interactive perspective, there are several important challenges requiring future investiga-
tion within an interactive activation framework.

Dynamics of perception in probabilistically grounded interactive activation models. The
IA hypothesis states that processing approaches the ideal of achieving optimal results in
real time as information becomes available. A good deal of experimental work has been
carried out showing that participants in perceptual and language-processing tasks use all
of the available information and start to show sensitivity to it within a third of a second
of its arrival at the sensory surface. Simulations of such findings have been provided
using the original TRACE model and related, simple Luce-ratio-based models (Spivey &
Tanenhaus, 1998). Future work should explore these issues in more detail, relying on
probabilistically grounded models like the multinomial IA model.

We have begun to explore a related issue in the multinomial IA model (Khaitan &
McClelland, 2010), namely, the build-up of performance—and of contextual influence on
performance—as participants are given increasing amounts of exposure to target informa-
tion (Massaro & Klitzke, 1979). This issue is important because Massaro and Cohen
(1991) specifically posed it as a challenge to the interactive activation model that was not
fully addressed by the stochastic version of the model presented in McClelland (1991).
Specifically, if input feature information builds up over time according to the empirical
function proposed by Massaro and Cohen (1991), would the processing machinery pro-
vided by the multinomial IA model show the right pattern of enhancement for perception
of letters in words compared to letters in random sequences? The simulation reported in
Khaitan and McClelland (2010) suggests that the answer to this question may be yes, but
the simulation is preliminary, and more work is needed.

Adaptive optimization to task and instructional constraints. An important topic for fur-
ther research is the adaptive optimization of processing in interactive activation models in
response to task and instructional constraints. There are a number of important open
issues here. First, as we have noted, participants do adjust the extent to which they show
lexical influences on processing as a function of changes in the probability that stimulus
items will be words or non-words. Such influences are easily incorporated into Bayesian
models (Rumelhart & Siple, 1974 consider this issue extensively) and have also been
incorporated into the original IA and TRACE models (Mirman et al., 2008). It appears,
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however, that there are limits on the extent to which participants can actually suspend the
use of their knowledge of lexical constraints on speech sound identity. For example, in
one recent study (Hawthorne, 2011) participants showed lexical influences on perception
of speech sounds whether or not they were informed that each sound occurred equally
often in each of two possible contexts, as one might expect if the knowledge of lexical
constraints were hard wired into connections among the neurons involved in naturalistic
language processing, and these same neurons and connections were relied upon indepen-
dent of the instructional manipulation. There are empirical and theoretical questions here
that deserve further consideration.

Incorporating learning and distributed representations in interactive models of percep-
tion. Research on interactive activation models of perception pre-dated the development
of powerful learning models for parallel distributed processing systems that were devel-
oped in the mid-1980s. Models using learned distributed representations have been suc-
cessful in addressing a wide range of aspects of linguistic and semantic processing, and
we look forward to full integration of learning and distributed representation in further
explorations of perceptual processing tasks. Recent developments of fast and powerful
learning methods for deep belief networks (Hinton, 2014) should facilitate these
explorations.

Meeting the computational challenges facing perceptual and cognitive systems in natural-
istic perceptual contexts. The IA and TRACE models that have been the focus of our
investigations here finesse many challenges facing the development of models that will
be robust and efficient enough to succeed in matching human capabilities in naturalistic
perceptual situations. These challenges are the focus of intense research among a wide
range of researchers in the fields of Al, machine vision, and machine learning. Much of
this work builds on neural network ideas with origins in IA models and precursors of
such models, and of course a great deal of this work incorporates explicit probabilistic in-
ferencing mechanisms. In turn, much of this work should feed back into the effort to
understand human perceptual processing mechanisms, as they are instantiated in the neu-
ral mechanisms provided by the brain. The further development of interactive activation
models of perception will benefit greatly from these developments.

Fully grounding IA models in the neural mechanisms provided by the brain. The final
challenge we will mention is the goal of understanding exactly how the IA process is
implemented in the neural machinery in the brain. Neurons and their properties have been
a source of inspiration in the development of these models, and evidence from neurosci-
ence supports the view that perceptual processing in the brain is an IA-like process, as
we have reviewed. Building an integrated understanding of the way in which neural
mechanisms give rise to perception is a goal that many researchers strive for; if the IA
hypothesis is correct, such an integrated understanding will rely on principles of interac-
tive activation.
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Notes

1. Although the original IA model employed between-level inhibition as well as excita-
tion, the TRACE model and other subsequent models used excitatory-only connec-
tions between levels with inhibition restricted to within-level interactions. The
primary reason for eliminating between-level inhibition was to allow even a poorly
fitting interpretation to become active when there is no better interpretation. We will
return to this issue in discussing the multinomial interactive activation model below.

2. For simplicity, the IA and TRACE models assumed discrete slots for letters and
phonemes, although TRACE assumed some spread of phonological features pro-
ducing overlap between adjacent slots. Recent evidence reviewed in Norris (2013)
suggests that both models should allow for positional uncertainty, so that letters
near the appropriate position can still activate the corresponding word-level unit
(e.g., TRCK should activate the word TRUCK much more than TRXY does).

3. Presentations of the original IA model did not stress that it contained separate units
for the presence and for the absence of each possible feature. Fig. 2 makes this fea-
ture of the model more explicit than in earlier diagrams of the model.

4. Note that the p(w) values used in the model are not raw word frequencies; instead,
as in the original IA model, these probabilities are compressed (McClelland &
Rumelhart, 1981). Without this compression, there would be a much larger range
of variation in the posterior probabilities shown in Fig. 6. The compression of the
p(w) values amounts to an (implicit) “assumption” about stimulus frequency incor-
porated in the model. The bias terms on the word units are the natural logarithms
of these already-compressed p(w) values.

5. This result follows from the fact that the sum of the logarithms of a set of quanti-
ties is equal to the logarithm of the product of the quantities, for example,
In(a)+In(b) = In(ab), and the fact that e to the log of a quantity is simply the quan-
tity itself, that is, e™ * = x. We also rely on the fact that ¢”” = (¢%)"/".

6. The complete Bayes’ formula would contain factors for the prior probabilities of
letters. However, in the generative model, letters do not have independent prior
probabilities; instead, letter probabilities depend on the word level, whose influence
on the letter level is incorporated on the second and subsequent updates of the units
at the letter level. On the first update, letters are treated as equally probable. Such
a constant factor would cancel out and is therefore not expressed in the equation.
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7. It should be noted here that changing the temperature parameter is equivalent to
scaling the weights and biases in the model, and these in turn represent relative
probabilities and relative conditional probabilities in the generative model. Thus, a
lower temperature corresponds to assuming less randomness in the generative
model.

8. If the model was required to read out from the word level, it would always produce
a word response, but the same would have been true of the original IA model.
When asked to report all four letters, human observers do not always report words
when pseudowords are presented (McClelland & Johnston, 1977). Further research
is needed to determine if the pattern of whole report responses obtained with
pseudowords can be explained by the MIA model, assuming readout from the four-
letter positions.

9. In Massaro’s model (Massaro, 1989), the relative stimulus support for r, called s,,
corresponds to p(slr)/(p(slr)+p(sll)); and the relative context support c, corre-
sponds to p(ric)/(p(ric)+p(lic)). The stimulus and context support for / are defined
similarly. Since s, + s;=1, s; can be replaced by 1 — s,; similarly, ¢; can
be replaced by 1 — c¢,. Thus, for the two alternative case his model then becomes
p(rls,c) = s, ¢,/ (s, ¢, + (1 — s,)(1 — c,)). Participants then choose the r response
with a probability equal to the resulting estimate of p(rls,c).

10. As Pearl (1982) showed, it is possible to keep a record of the information passed
up from each position to a higher level, and then cancel this back out of the top-
down signal broadcast down to all lower levels from above, and a precursor of this
idea was described in Rumelhart (1977). We view Pearl’s proposal as an alternative
implementation of an interactive model of perception; a comparison of this
approach to the MIA model is provided in McClelland (2013).

References

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word
recognition using eye movements: Evidence for continuous mapping models. Journal of Memory &
Language, 38(4), 419—439.

Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of
subsequent reference. Cognition, 73(3), 247-264.

Ashby, J., & Martin, A. E. (2008). Prosodic phonological representations early in visual word recognition.
Journal of Experimental Psychology. Human Perception and Performance, 34(1), 224-236. doi:10.1037/
0096-1523.34.1.224.

Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617-629.

Barton, J. J. S., Fox, C. J., Sekunova, A., & laria, G. (2010). Encoding in the visual word form area: An
fMRI adaptation study of words versus handwriting. Journal of Cognitive Neuroscience, 22(8), 1649—
1661. doi:10.1162/jocn.2009.21286.

Bavelier, D., & Neville, H. J. (2002). Cross-modal plasticity: Where and how? Nature Reviews Neuroscience,
3, 443-452.

Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural correlates of
sensory and decision processes in auditory object identification. Nature Neuroscience, 7(3), 295-301.



J. L. McClelland et al./Cognitive Science 38 (2014) 1183

Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human
left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33(2), 739-748.

Bizley, J., & King, A. (2009). Visual influences on ferret auditory cortex. Hearing Research, 258, 55-63.

Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008). Neural correlates of
orthographic and phonological consistency effects in children. Human Brain Mapping, 29(12), 1416-1429.

Bolger, D. J., Minas, J., Burman, D. D., & Booth, J. R. (2008). Differential effects of orthographic and
phonological consistency in cortex for children with and without reading impairment. Neuropsychologia,
46(14), 3210-3224.

Bowers, J. S. (2009). On the biological plausibility of grandmother cells: Implications for neural network
theories in psychology and neuroscience. Psychological Review, 116, 220-251.

van den Brink, D. 1., Brown, C. M., & Hagoort, P. (2001). Electrophysiological evidence for early contextual
influences during spoken-word recognition: N200 versus N400 effects. Journal of Cognitive Neuroscience,
13(7), 967-985.

Buchel, C., Price, C., Frackowiak, R. S. J., & Friston, K. (1998). Different activation patterns in the visual
cortex of late and congenitally blind subjects. Brain, 121, 409-419.

Cappe, C., & Barone, P. (2005). Heteromodal connections supporting multisensory integration at low levels
of cortical processing in the monkey. European Journal of Neuroscience, 22, 2886—2902.

Carrasco, A., & Lomber, S. G. (2010). Reciprocal modulatory influences between tonotopic and nontonotopic
cortical fields in the cat. The Journal of Neuroscience, 30(4), 1476-1487.

Carreiras, M., Ferrand, L., Grainger, J., & Perea, M. (2005). Sequential effects of phonological priming in
visual word recognition. Psychological Science, 16(8), 585-589. doi:10.1111/j.1467-9280.2005.01579.

Chambers, C. G., Tanenhaus, M. K., & Magnuson, J. S. (2004). Actions and affordances in syntactic
ambiguity resolution. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(3), 687—
696.

Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., Honda, M., Sadato, N.,
Gerloff, C., Catala, M. D., & Hallett, M. (1997). Functional relevance of cross-modal plasticity in blind
humans. Nature, 389(6647), 180-183. doi:10.1038/38278

Cohen, J. D., Servan-Schreiber, D., & McClelland, J. L. (1992). A parallel distributed processing approach to
automaticity. American Journal of Psychology, 105, 239-269.

Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain
regions involved in phonological and orthographic processing during spoken language processing.
Neuroimage, 41(2), 623-635.

Dahan, D., & Tanenhaus, M. K. (2004). Continuous mapping from sound to meaning in spoken-language
comprehension: Immediate effects of verb-based thematic constraints. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 30(2), 498.

Dean, T. (2005). A computational model of the cerebral cortex. In Proceedings of AAAI-05 (pp. 938-943).
Cambridge, MA: MIT Press.

Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal.
Trends in Cognitive Sciences, 9(7), 335-341.

Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review,
93(3), 283-321.

Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic
and nonaphasic speakers. Psychological Review, 104(4), 801-838.

DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language
comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117.

Desroches, A. S., Cone, N. E., Bolger, D. J., Bitan, T., Burman, D. D., & Booth, J. R. (2010). Children with
reading difficulties show differences in brain regions associated with orthographic processing during
spoken language processing. Brain Research, 1356, 73-84.



1184 J. L. McClelland et al./Cognitive Science 38 (2014)

Dierks, T., Linden, D. E. J., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., & Singer, W., et al.
(1999). Activation of Heschl‘s gyrus during auditory hallucinations. Psychiatry: Interpersonal and
Biological Processes, 22, 615-621.

Elman, J. L., & McClelland, J. L. (1984). Speech perception as a cognitive process: The interactive
activation model. In Norman Lass (Ed.), Speech and Language. Vol. 10. New York: Academic Press.

Elman, J. L., & McClelland, J. L. (1988). Cognitive penetration of the mechanisms of perception:
Compensation for coarticulation of lexically restored phonemes. Journal of Memory & Language, 27(2),
143-165.

Falchier, A., Clavagnier, S., Barone, P., & Kennedy, G. (2002). Anatomical evidence of multimodal
integration in primate striate cortex. Journal of Neuroscience, 22, 5749-5759.

Feldman, N. H., Griffiths, T. L., & Mrogan, J. L. (2009). The influence of categories on perception: Explaining
the perceptual magnet effect as optimal statistical inference. Psychological Review, 116, 752—782.

Felleman, D.J. & van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex.
Cerebral Cortex, 1, 1-47.

Fox, R. A. (1984). Effect of lexical status on phonetic categorization. Journal of Experimental Psychology:
Human Perception and Performance, 10, 526-540.

Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16, 1325-1352.

Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211.

Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of Experimental
Psychology: Human Perception & Performance, 6(1), 110-125.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721741.

Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive
Science, 10, 278-285.

Ghuman, A. S., Bar, M., Dobbins, I. G., & Schnyer, D. M. (2008). The effects of priming on frontal-
temporal communication. Proceedings of the National Academy of Sciences of the United States of
America, 105(24), 8405-8409.

Gotts, S. J., Chow, C. C., & Martin, A. (2012). Repetition priming and repetition suppression: A case for
enhanced efficiency through neural synchronization. Cognitive Neuroscience, 3(3—4), 227-237.

Gow, D. W., Segawa, J. A., Ahlfors, S. P., & Lin, F.-H. (2008). Lexical influences on speech perception: A
Granger causality analysis of meg and eeg source estimates. Neurolmage, 43, 614—623.

Gratton, G., Coles, M. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and post stimulus
activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology:
Human Perception and Performance, 14, 331-344.

Graves, W. W., Desai, R., Humphries, C., Seidenberg, Mark S., & Binder, J. R. (2010). Neural systems for
reading aloud: A multiparametric approach. Cerebral Cortex, 20(8), 1799-1815. doi:10.1093/cercor/
bhp245.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

Grinband, J., Hirsch, J., & Ferrera, V. P. (2006). A neural representation of categorization uncertainty in the
human brain. Neuron, 49(5), 757-763.

Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011). The dorsal medial
frontal cortex is sensitive to time on task, not response conflict or error likelihood. Neuroimage, 57(2),
303-311.

Grossberg, S. A. (1978). A theory of coding, memory, and development. In E. L. J. Leeuwenberg & H. F. J.
M. Buffart (Eds.), Formal theories of visual perception (p. 1978). New York: Wiley.

Grossberg, S. (1980). How does the brain build a cognitive code? Psychological Review, 87, 1-51.

Guediche, S., Salvata, C., & Blumstein, S. E. (2013). Temporal cortex reflects effects of sentence context on
phonetic processing. Journal of Cognitive Neuroscience, 25(5), 706-718.

Hall, A. J., & Lomber, S. G. (2008). Auditory cortex projections target the peripheral field representation of
primary visual cortex. Experimental Brain Research, 190(4), 413—430.



J. L. McClelland et al./Cognitive Science 38 (2014) 1185

Hansen, T., Olkkonen, M., Walter, S., & Gegenfurtner, K. R. (2006). Memory modulates color appearance.
Nature Neuroscience, 9(11), 1367-1368.

Harm, M. W., McCandliss, B. D., & Seidenberg, M. S. (2003). Modeling the successes and failures of
interventions for disabled readers. Scientific Studies of Reading, 7(2), 155-182.

Hartsuiker, R. J., Corley, M., & Martensen, H. (2005). The lexical bias effect is modulated by context, but
the standard monitoring account doesn’t fly: Related beply to Baars et al (1975). Journal of Memory &
Language, 52(1), 58-70.

Hawthorne, D. J. (2011). Can instructions diminish the influence of phonetic categories on the perception of
speech sounds? Unpublished research paper, Department of Psychology, Stanford University.

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(2), 181—
197. doi:10.1017/50952523800009640.

Henderson, C. M., & McClelland, J. L. (2011). A PDP model of the simultaneous perception of multiple
objects. Connection Science, 23, 161-172.

Hinton, G. E. (2014). Where do features come from? Cognitive Science, 38, 1078-1101.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In D. E. Rumelhart,
J. L. McClelland, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the
microstructure of cognition. Volume 1: Foundations (pp. 77-109). Cambridge, MA: MIT Press.

Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Washington, DC.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E.
Rumelhart, J. L. McClelland & the PDP research group (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition. Volume L. (Ch. 7, pp 282-317). Cambridge, MA: MIT
Press.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554-2558.

Hupé, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., & Bullier, J. (1998). Cortical feedback
improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394, 784—
787.

James, R. C. (1965). Photo of a dalmation dog. LIFE Magazine, 58(7), 120.

Jefferies, E., Frankish, C. R., & Ralph, M. A. L. (2006). Lexical and semantic binding in verbal short-term
memory. Journal of Memory and Language, 54(1), 81-98.

Jones, E. G., & Powell, T. P. (1970). An anatomical study of converging sensory pathways within the
cerebral cortex of the monkey. Brain, 93, 793-820.

Kanizsa, G. (1979). Organization in vision. New York: Praeger.

Khaitan, P., & McClelland, J. L. (2010). Matching exact posterior probabilities in the Multinomial Interactive
Activation Model. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the
Cognitive Science Society (p. 623). Austin, TX: Cognitive Science Society.

Kramer, A. F., & Donchin, E. (1987). Brain potentials as indices of orthographic and phonological
interaction during word matching. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 13(1), 76.

Kronbichler, M., Bergmann, J., Hutzler, F., Staffen, W., Mair, A., Ladurner, G., & Wimmer, H. (2007). Taxi
vs. Taksi: On orthographic word recognition in the left visual occipitotemporal cortex. Journal of
Cognitive Neuroscience, 19(10), 1584—1594.

Kronbichler, M., Hutz, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form
area and the frequency with which words are encountered: Evidence from a parametric fMRI study.
Neuroimage, 21(3), 946-953.

Kubat, R., Mirman, D., & Roy, D. K. (2009). Semantic context effects on color categorization. In N. A.
Taatgen & H. V. Rijn (Eds.), Proceedings of the 31st Annual Cognitive Science Society Meeting (pp.
491-495). Austin, TX: Cognitive Science.



1186 J. L. McClelland et al./Cognitive Science 38 (2014)

Kuhl, P. K. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of
speech categories, monkeys do not. Perception & Psychophysics, 50, 93—107.

Kumaran, D., & McClelland, J. L. (2011). Beyond Episodic memory: A complementary learning systems
account of the hippocampal contribution to generalization. Psychological Review, 119, 573-616.

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the
Optical Society of America. A, Optics, Image Science, and Vision, 20(7), 1434—1448.

Lee, T. S., & Nguyen, M. (2001). Dynamics of subjective contour formation in early visual cortex.
Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1907-1977.

Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends
in Cognitive Sciences, 3(7), 254-264.

Lewkowicz, D. J., & Ghazanfar, A. A. (2009). The emergence of multisensory systems through perceptual
narrowing. Trends in Cognitive Sciences, 13(11), 470-478.

van Linden, S., Stekelenburg, J. J., Tuomainen, J., & Vroomen, J. (2007). Lexical effects on auditory speech
perception: An electrophysiological study. Neuroscience letters, 420(1), 49-52. doi:10.1016/j.neulet.2007.
04.006.

van Linden, S., & Vroomen, J. (2007). Recalibration of phonetic categories by lipread speech versus lexical
information. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1483—1494.

Magnuson, J. S., McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2003). Lexical effects on compensation
for coarticulation: The ghost of Christmash past. Cognitive Science, 27(2), 285-298.

Magnuson, J. S., Tanenhaus, M. K., & Aslin, R. N. (2008). Immediate effects of form-class constraints on
spoken word recognition. Cognition, 108(3), 866—873.

Mann, V. A., & Repp, B. H. (1981). Influence of preceding fricative on stop consonant perception. Journal
of the Acoustical Society of America, 69, 546-558.

Marr, D. (1982). Vision. San Francisco, CA: Freeman.

Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access during word
recognition in continuous speech. Cognitive Psychology, 10(1), 29-63.

Massaro, D. W. (1979). Letter information and orthographic context in word perception. Journal of
Experimental Psychology: Human Perception and Performance, 5(4), 595-609.

Massaro, D. W. (1989). Testing between the TRACE model and the fuzzy logical model of speech
perception. Cognitive Psychology, 21, 398-421.

Massaro, D. W., Cohen, M. M. (1983). Phonological context in speech perception. Perception &
Psychophysics, 34, 338-348.

Massaro, D. W., & Cohen, M. M. (1991). Integration versus interactive activation: The joint influence of
stimulus and context in perception. Cognitive Psychology, 23, 558-614.

Massaro, D. W., & Klitzke, D. (1979). The role of lateral masking and orthographic structure in letter and
word perception. Acta Psychologica, 43, 413-426.

McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the
fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293-299.

McClelland, J. L. (1981). Retrieving general and specific information from stored knowledge of specifics. In
Proceedings of the Third Annual Conference of the Cognitive Science Society (pp. 170-172).

McClelland, J. L. (1985). Putting knowledge in its place: A scheme for programming parallel processing
structures on the fly. Cognitive Science, 9, 113-146.

McClelland, J. L. (1986). The programmable blackboard model of reading. In J. L. McClelland, D. E.
Rumelhart, & the PDP research group. Parallel distributed processing: Explorations in the microstructure
of cognition. Volume II (pp. 122-169). Cambridge, MA: MIT Press.

McClelland, J. L. (1987). The case for interactionism in language processing. In M. Coltheart (Ed.), Attention
& performance XII: The psychology of reading (pp. 1-36). London: Erlbaum.

McClelland, J. L. (1991). Stochastic interactive processes and the effect of context on perception. Cognitive
Psychology, 23, 1-44.



J. L. McClelland et al./Cognitive Science 38 (2014) 1187

McClelland, J. L. (1998). Connectionist models and Bayesian inference. In M. Oaksford & N. Chater (Eds.),
Rational models of cognition (pp. 21-53). Oxford, England: Oxford University Press.

McClelland, J. L. (2013). Integrating probabilistic models of perception and interactive neural networks: A
historical and tutorial review. Frontiers in Psychology, 4, 503. doi:10.3389/fpsyg.2013.00503.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology,
18(1), 1-86.

McClelland, J. L., & Johnston, J. C. (1977). The role of familiar units in perception of words and nonwords.
Perception & Psychophysics, 22, 249-261.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter
perception, I: An account of basic findings. Psychological Review, 88(5), 375-407.

McClelland, J. L., Rumelhart, D. E., & Hinton, G. E. (1986). The Appeal of Parallel Distributed Processing. In D.
E. Rumelhart, J. L. McClelland, & the PDP research group (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition. Volume 1. (pp. 3—44). Cambridge, MA: MIT Press.

McGuire, P. K., Silbersweig, D. A., & Frith, C. D. (1996). Functional neuroanatomy of verbal self-
monitoring. Brain, 119, 907-917.

McMurray, B., & Aslin, R. N. (2004). Anticipatory eye movements reveal infants’ auditory and visual
categories. Infancy, 6(2), 203-229.

McQueen, J. M., Cutler, A., & Norris, D. (2006). Phonological abstraction in the mental lexicon. Cognitive
Science, 30(6), 1113-1126.

McQueen, J. M., Jesse, A., & Norris, D. (2009). No lexical-prelexical feedback during speech perception or:
Is it time to stop playing those Christmas tapes? Journal of Memory and Language, 61(1), 1-18.

Mirman, D., McClelland, J. L., & Holt, L. L. (2006). An interactive Hebbian account of lexically guided
tuning of speech perception. Psychonomic Bulletin & Review, 13(6), 958-965.

Mirman, D., McClelland, J. L., Holt, L. L., & Magnuson, J. S. (2008). Effects of attention on the strength of
lexical influences on speech perception: Behavioral experiments and computational mechanisms. Cognitive
Science, 32(2), 398-417.

Mitterer, H., & de Ruiter, J. P. (2008). Recalibrating color categories using world knowledge. Psychological
Science, 19(7), 629-634.

Molinaro, N., Dunabeitia, J. A., Marin-Gutierrez, A., & Carreiras, M. (2010). From numbers to letters:
Feedback regularization in visual word recognition. Neuropsychologia, 48(5), 1343—1355.

Monsell, S., Patterson, K. E., Graham, A., Hughes, C. H., & Milroy, R. (1992). Lexical and sublexical
translation of spelling to sound: Strategic anticipation of lexical status. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 18(3), 452—467.

Movellan, J. R.,, & McClelland, J. L. (2001). The Morton-massaro law of information integration:
Implications for models of perception. Psychological Review, 108, 113—148.

Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical
loops. Biological Cybernetics, 66, 241-251.

Myers, E. B., & Blumstein, S. E. (2008). The neural bases of the lexical effect: An fMRI investigation.
Cerebral Cortex, 18(2), 278-288.

Newman, R. S., Sawusch, J. R., & Luce, R. A. (1997). Lexical neighborhood effects in phonetic processing.
Journal of Experimental Psychology: Human Perception and Performance, 23(3), 873-889.

Norris, D. (2013). Models of visual word recognition. Trends in Cognitive Sciences, 17(10), 517-524.

Norris, D., & McQueen, J. M. (2008). Shortlist B: A Bayesian model of continuous speech recognition.
Psychological Review, 115(2), 357-395.

Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is
never necessary. The Behavioral and Brain Sciences, 23(3), 299-370.

Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2),
204-238.



1188 J. L. McClelland et al./Cognitive Science 38 (2014)

Paap, K. R., Newsome, S. L., McDonald, J. E., & Schvaneveldt, R. W. (1982). An activation—
verification model for letter and word recognition: The word-superiority effect. Psychological Review, 89,
573-594.

Pattamadilok, C., Morais, J., De Vylder, O., Ventura, P., & Kolinsky, R. (2009). The orthographic
consistency effect in the recognition of French spoken words: An early developmental shift from
sublexical to lexical orthographic activation. Applied Psycholinguistics, 30, 441-462.

Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. (2008). On-line orthographic influences on spoken
language in a semantic task. Journal of Cognitive Neuroscience, 21(1), 169-179.

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical approach. In Proceedings of
AAAI-82. (pp. 133-136).

Perre, L., Midgley, K., & Ziegler, J. C. (2009). When beef primes reef more than leaf: Orthographic
information affects phonological priming in spoken word recognition. Psychophysiology, 46(4), 739-746.
doi:10.1111/j.1469-8986.2009.00813.

Perre, L., & Ziegler, J. C. (2008). On-line activation of orthography in spoken word recognition. Brain
research, 1188, 132-138. doi:10.1016/j.brainres.2007.10.084.

Phaf, R. H., Van der Heijden, A. H. C., & Hudson, P. T. W. (1990). SLAM: A connectionist model for
attention in visual selection tasks. Cognitive Psychology, 22, 273-341.

Pitt, M. A. (1995). The locus of the lexical shift in phoneme identification. Journal of Experimental
Psychology. Learning, Memory, and Cognition, 21(4), 1037-1052.

Pitt, M. A., & McQueen, J. M. (1998). Is compensation for coarticulation mediated by the lexicon? Journal
of Memory & Language, 39(3), 347-370.

Pitts, W., & McCullough, W. S. (1947). How we know universals: The perception of auditory and visual
forms. Bulletin of Mathematical Biophysics, 9, 127-147.

Plaut, D. C., & McClelland, J. L. (2010). Locating object knowledge in the brain: A critique of Bowers’
(2009) attempt to revive the grandmother cell hypothesis. Psychological Review, 117, 284-288.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of
some extraclassicalreceptive-field effects. Nature neuroscience, 2(1), 79-87.

Rapp, B., & Goldrick, M. (2000). Discreteness and interactivity in spoken word production. Psychological
Review, 107(3), 460—499.

Reddy, D. R., Erman, L. D., Fennell, R. O., & Neely, R. B. (1973). The hearsay speech understanding
system: An example of the recognition process. In Proceedings of the 3rd international joint conference
on Artificial Intelligence (pp. 185-194). San Francisco, CA: Morgan Kaufmann.

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness ofg stimulus material. Journal
of Experimental Psychology, 81, 274-280.

Rizzolatti, G., Riggio, L., Dascola, 1., & Umlita, C. (1980). Reorienting attention across the horizontal and
vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1a), 31-40.

Rockland, K. S., & Ojima, H. (2003). Multisensory convergence in calcarine visual areas in macaque
monkey. Journal of Psychophysiology, 50, 19-26.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological review, 65(6), 386.

Rumelhart, D. E. (1977). Toward an interactive model of reading. In S. Dornic (Ed.), Attention and
Performance VI. (pp. 573-603). Hillsdale, NJ: LEA.

Rumelhart, D. E., & McClelland, J. L. (1981). Interactive processing through spreading activation. In
C. Perfetti & A. Lesgold (Eds.), Interactive processes in reading (pp 37-60). Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects in letter
perception: II. The contextual enhancement effect and some tests and extensions of the model.
Psychological Review, 89(1), 60-94.

Rumelhart, D. E., & Siple, P. (1974). The process of recognizing tachistoscopically presented words.
Psychological Review, 81, 99—118.



J. L. McClelland et al./Cognitive Science 38 (2014) 1189

Samuel, A. G. (1981). Phonemic restoration: Insights from a new methodology. Journal of Experimental
Psychology: General, 110(4), 474.

Samuel, A. G. (1986). Red herring detectors and speech perception: In defense of selective adaptation.
Cognitive Psychology, 18(4), 452—499.

Samuel, A. G. (1997). Lexical activation produces potent phonemic percepts. Cognitive Psychology, 32(2),
97-127.

Samuel, A. G. (2001). Knowing a word affects the fundamental perception of the sounds within it.
Psychological Science, 12(4), 348-351.

Samuel, A. G., & Kat, D. (1996). Early levels of analysis of speech. Journal of Experimental Psychology:
Human Perception and Performance, 22(3), 676-694.

Samuel, A. G., & Kraljic, T. (2009). Perceptual learning for speech. Attention, Perception, & Psychophysics,
71(6), 1207-1218.

Samuel, A. G., & Pitt, M. A. (2003). Lexical activation (and other factors) can mediate compensation for
coarticulation. Journal of Memory & Language, 48(2), 416434,

Schroeder, C. E., Lindsley, R. W., Specht, C., Marcovici, A., Smiley, J. F., & Javitt, D. C. (2001).
Somatosensory input to auditory association cortex in the macaque monkey. Journal of Neurophysiology,
85, 1322-1327.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and
naming. Psychological Review, 96, 523-568.

Seidenberg, M. S., Tanenhaus, M. K., Leiman, J. M., & Bienkowski, M. (1982). Automatic access of the
meanings of ambiguous words in context: Some limitations of knowledge-based processing. Cognitive
Psychology, 14(4), 489-537.

Sherman, G. (1971). The phonemic restoration effect: An insight into the mechanisms of speech perception.
Unpublished master’s thesis, University of Wisconsin, Milwaukee.

Smolensky, P. (1986). Neural and conceptual interpretation of PDP models. In J. L. McClelland, D. E.
Rumelhart, & the PDP research group. Parallel distributed processing: Explorations in the microstructure
of cognition. Volume II, (pp. 390-431). Cambridge, MA: MIT Press.

Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H. (2012). Predictive top-down integration of prior
knowledge during speech perception. The Journal of Neuroscience, 32(25), 8443—-8453.

Spivey, M., & Tanenhaus, M. (1998). Syntactic ambiguity resolution in discourse: Modeling the effects of
referential context and lexical frequency. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 24, 1521-1543.

Spratling, M. W., & Johnson, M. H. (2004). A feedback model of visual attention. Journal of Cognitive
Neuroscience, 16(2), 219-237.

Stephens, J. D. W., & Holt, L. L. (2003). Preceding phonetic context affects perception of nonspeech (L).
Journal of the Acoustical Society of America, 114(6,Ptl), 3036-3039.

Swinney, D. A. (1979). Lexical access during sentence comprehension: (Re)consideration of context effects.
Journal of Verbal Learning and Verbal Behavior, 18, 645-659.

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual
and linguistic information in spoken language comprehension. Science, 268(5217), 632-634.

Vul, E., Goodman, N. D., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions
from very few samples. Cognitive Science, 38(4), 599-637.

Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167, 392-393.

Warren, R. M., & Warren, R. P. (1971). Some age differences in auditory perception. Bulletin of the New
York Academy of Medicine, 47(11), 1365.

Wilson, T. W., Leuthold, A. C., Lewis, S. M., Georgopoulos, A. P., & Pardo, P. J. (2005). Cognitive
dimensions of orthographic stimuli affect occipitotemporal dynamics. Experimental Brain Research., 167
(2), 141-147. doi:10.1007/s00221-005-0011-4.



title: Interactive Activation and Mutual Constraint Satisfaction in Perception and Cognition author: "James L. McClelland and Daniel Mirman and Donald J. Bolger and Pranav Khaitan" year:

2014 output: html_document: df print: paged docx: default word_document: default pdf document: default journal: Cognitive Science

HEE &SRR 3BT A LG PEAL & AR 7E e

W

VRV N— P 1977 FEICFER L A HE AT, FMEICIEROEEREZ R ICAH T 2 2 LR ETH D, MEZIERIFET 2LV 7L A4
DKL BB )L CREERZREICHERT 2 2 LR TEB E TR LA, T, FMEPHEMEO X = A48, Wiz =y oL
DOIITADEMZE WL CIfTE N5, HARELBEZFHLTW2 L WwIFEZTHD, LALN—FOEMICHEIOTRE, R, ONRHZEHE
W DRAE LT, XF - BEBEAEOMEEELE 7L L EHMED TRACE T F A2 B, Zh o o & Pl Bd 2 SBRiEEil 2 Mt
T3, INSDETAD, FAEOMENS 725 T LOBEIC EORENIEL TO 32 Mai L, TEIEE) S/ NIGHLE EORE—BL T
WERDEBRIT 5, MM &R A i L OBRZE O C 2P G, HAAME W) EZ 2D C LRI - BN i 2 Ek 3 5,
MWD A= 3 v OMETGEALE TV O FEE 0TI, Foltke AROBEE T — 2 O 6 0@ I Lz, LaLl, BEDETLTH,
INGDORMETMLTRE, INSDETLDOFRITE, LEHAEEE TV ERENZ bORH D, MHAGEL & X4 G2 RIS
FTw3, Fe, MRREHACHRER EOWEDL S, MARUHEIEINO MBI ORI TH 2 2 L 2 BT 25HLEHN T2, Dol L
D6, Thal, FEROGSN, TEIENE X BRI $ T, TGO, 2R L Cwa ETRT 5, s Ol HIA
WAL & W) B ZIEED OB DE T U0y, MR OSTER LR L EL T 20BN OMEEE R DT 2 2 L ERBL Vw5,

F—U— FARE, MEWEME, WA ELE, axrrazAMETN, BREMEH, —2—JV%v bT7—7

1. 3 A Introduction

AHU 5L (PDP) P 2 DILHE & 7 2R D —Di, WIS 5, MM, MAHKTREOME LK TH 2, —MEHE LT, MELSERLOLY
FHUZ, YR 2—0 v 0k ) OB R ORISR B T2 2 ETHEL R LW IEZSTH S, Zo&IE, XEPHFEOMHEOMILIEM 1A) 7L
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982) %°, #7515 ? TRACE € 7 )L (McClelland & Elman, 1986) DH LN b D TH -7, ZNHDETILT
1%, BGEESUTEREH, XFEXTRM, SHRLZORMRE, ShrlnerETa=y FEOBTRNHEEICENRPYTONTVE, IREDETLTE, H
BB, OT, B, R EOPURINCHIZETRER MR 2 RS20, A2 —nrD k) RUFHEMEAE D BTSN T wE, oMLy M, ST 55
A=y MIFHEL =2 —v v OfEMERL T3 EEZ 515 (Bowers, 2009), 4 13E D HA%Z L TWw25, Smolensky (1986) DIELEIZI> T, ETFT/LHOUM 2=
v ML, ZNENDELDOREZTA T LORBUCHET 2 = 2 —n v OEROEFORE (Y — v L LTRSS - E#REZ % L T\ % (Hinton, McClelland, &
Rumelhart, 1986; Plaut & McClelland, 2010), 1A €TV, DX I 2IREORHIZE L & NEZEIT 5, J4ud, HiEE 2 2 MREHIOTF 2L EMS %, Smolensky 23
M7 FBIZER] E WA S DITREE T B DI,

DR s % X 9ic, MAEELE T VORI 2B, FEBICKCERT, HE, HE, Z2oftbo AowTnd oBERPMEOHENLERL, AJofhoT~R
TOHEFELMHE OFNPHPUEEINZ LV IHIBETH 2, JHUTHIBL T, REZAENEROIERO L L ToEEMT 235 2, —iiNic, MERo Eor X
MCBWTH, ANZEBIRT 2720 OEBNZ BN, HMTEZ 3 EHRPIEARVI LD, FEEZORLWHEOE VAR, TRTOEEOMMREL
DR E B R L ZICORRESIND, FEBE, Hx OBEEROGU»IEE IBKTH > T, TRTOEHED 1 2O—EH L @RS, FHlo2 AR X > TRl
PWEINDEZ DL H B (Mla),

M and }/ﬁ,&/fwz/f,&?@ Mo M.
Th lggr& yailt sas e Lt coend.



BI1. b AN SRR T E B WBADESEP S I N AT 7 v RHBTL %, James (1965) & D, Copyright © Ronald C. James, reprinted with permission.
T: FHETELNZILHD “went " £ 23CHD "event “IX[F U 724%, 2 D084 2 RO CTIE 7 > kI %, Rumelhart (1977) p. 579, fig.3 &
), Copyright © Taylor and Francis Group, reprinted with permission.

AL & PRSI R 2T, O RINGIRILS,  SCURIICEY) 278 Ol O PUE O TR A4 £, RMotho%  ofliicEH S5, Fikic, BHESPHEER
&, AR, RRR, BE, fTEhcHAINZBEMNATRIE 2D, MEofSRICEEE Lz, LIELISEEERZT S,

PDP #@ D45 1 B (McClelland, Rumelhart, & Hinton, 1986) i, fTEHER, @ADL, ELE, RALHOMO T XTOFNT, INoDRUBEBFEIEL 5 L2
LTw3,

Z DX ITELEMD TR T OMEI I HAIAE D > T b L) FEZTE, MEPLEHMOEY 2 — L7 e —FIcfb2 bDTh 5, WFISHILI T,
FEEDMBISICH 2 RED = 2 — 1 VRMREEND, H2MOBEMERBIT 27 DIRULINTO R TRIENS 2720, HMOH 2MOXFIIBE>Tw5%, Lal,
TR TOMEHRFS AR AMLOHHR 2T 2720101F, 20X A=2—n Y OREDT V4 v 7VHIRILT 2RI, EROMEIRO LRI B E LB
R Th2 EEZOND, HIZIE, BERRSNAHEOBEN, WP, MEW, BIOOENAMI2ZERT 50 OMEE»S 27T, BT 520 =
12— YDFEHLIRRD L) IcEZ oD, BET 22O = 2 — o v oiEE L, WHEEEL AL OB AD T, HLIEFLTwSEEIGNS,

1.1. A S TEIL € TV DT & Precursors to interactive activation models

A L BREOM BN T 70 —F OEEEIF, Rumelhart (1977) D KICH %, Rumelhart 1, 3077, %%, HEOMEICE T 2 UROEHE (Fig.1b) ®, ML SHELHEF

1 SCEOEEN - BRI OBBIR X % N T % 72 0 OB A BIERIEORICOWT, 19 RIS I 20> THEDF— Y ZRET L7z, VA LA— b, A5 & PEfE
DHENZE, RERGOFHER & AR RSN O S S HERBIR O AR ICE» R AR ZEL T, 2L ORE2KHL AV TANOLRARRE O3 L
REEZL, E5IC, MAMAN—FE, 0K BRREZRET NP ED L) IfTFbN 02 BEL T3, YWHOFHEAREDO ATHAEET 7L Th % Hearsay
(Reddy, Erman, Fennell, & Neely, 1973) 226 b ¥ b 23T X v k=Y vy —; /03 THEG LWEER 2 F—oE2E L, Zhi, ANOMRICE N5 gt
DB L HHRDOMEROHEEED TF 2 — 7 THEAFN) HMDOZX A= FRZNZTNENONEZWATL TEHEL, BREPHELZIT) ZLENTE S,

BlZIE, LEANOHE, & 2HFEOREDMIEICH 5 LFH A Th 2 WREEOHEEMIE, 7T 5 C BT 5 TORHE, CICfiVTA L THH LE8AELADH
B CAT T2 % &0 ) GEFEH 2 MO 7R HMRIC I > THO SN b Ltk vy, £, SNEPHORBH»NLGEHZ B30 ) THiUL, FEHL <L) CAT R
FrZowibIn s b Lk, ZOETIVIE, Rumelhart and Siple (1974) IZ X 2D E TN EZSEZICL T05, TOETNVIE, HEHELXFOME, BIUOHEIC
XFDEZ S NG DFMN SHROAGRIZIEI T, 3 LFORFIZ R L L EOLFORMET 27— 2HAL T3,

2. MGG TE(LE 7 V230 Y fi &t SR L oRvE

7 A= b (1977) Dy, MEPLSHEEMICE O THEMNT 25HE EOFEICOWT, RO L) IdRTws,

o I BHERDHOIANOYER. MIRPLSEEMA L 1L, HFLNADEEINL) LA LT, IFIFEFLRIL VTR OMEROE R Z FEZT 20 TH 5,
BIZIE, ErNLSEREPTHE SN SEREOMPIL, HFET RN E 23RN 2R, SCroEsE, WiE, ), X, 2L TIns oHHOERPREX
Wiz ET, ZOWEOHNIZ, 2FE L TRLEROFAEREZ B2 L Th 3,

o IR & SORDIGH]. BIE S & ) A4 ARNICHEET 2720, MEASOEEOMEDIE L Wi E B0 22 Rkt 211k, Fuikke, RBEAKD
Bk, HEiAS, NPT 2 EEERZ EOMofEE 5 D AN ZELSURY 6 OERZTHT 2 2 LB ETH B,

Rumelhart (1977) 3330 L 2725 7223, T4 AR L BED T 7V DUN 0 EH ¥ 242 R EHIRI 2 2 % .

o GEIFIRVLER IR, FITE & PIARIE TR 2R O BB R 2 S 2 Ud R 6 F, TRTORAE S 54 7ORRSAWIRIC k> 72 L FiZ, DT TDY A TR
DFFUCTEBZ 522 2L TED L) ICL AT UE RS v,

Z oHlFE MR OREO RIS D A3 2 Lid, ARG L L0 E R (Feldman, Griffiths, & Mrogan, 2009; Marr, 1982) & 13572 D, A LFERO A%
L, MREGET 2 LOICHERREPUWETIELZZEL 2, LaLl, FHHEPEETHSZ I EBHSLTHD, ¥4 T Iy 7tk SEIcHE (s X 0frEh)
TERTIUE, BEBEEPRICIIRBHIC LN EELDH 5,

ZDkIHic, EHHTTERRLTRAEREHTI LI, MES AT ADMEE L TOIHERLLVOFEO I TH 5, FEEEL LTSI OEE B 11,

Z DM D EENEE# Z 9 T % (Norris, 2013; Vul, Goodman, Griffiths, & Tenenbaum, 2014),

2.1. FIN T ORGE MR HEGR O & LT ARDRHITE & Bifig

DLEORGEIE, RIS E RO S A7 MBS L AL 5 AR L ORBEA R C0 s, KOMER, AMOM L MEORMIEL, <15 O LOREC K
M 2701 HBEINTHBEVI 2 ETH S,

o NN EGE 2 R RISEAER 200 80§ 2 Ao mTEE 13, T & BROR#EL S 2 T A0 SHIfF I N BT8Ry —Iii B 5, R & Flfo Rz AR L T
LHRAEE, AJIHERHECHMTRICAS L, MEANIDTRTDY —2ADFEZ2 RO T XCTOMMICKMmE L2,

ML EREREICIE, N —F Y = 7 OREIC X 2BED3H D, ABPREHISEVIREZ EBITE 2HHICYE L2525, £, RELO7DICIEREERSNIETH D,
FREPRERIC K > CHIE E DR IS L Tu 2o Tw3, MEBOMEE LT, HMEHAOHIEEDYE, oGzl T27200MEE L2
DMDFEHS AT L OTPEE, SR FIE, ER) 2 A -+ T520DMER (= 2—0rBXONYF72) D) B THTbNL, KT, REBUCKE L ZR#EL2T T
TN T2 EREL T, AL AZRABRHEREOE L SECHESELAN - HF T2 2 LIcBRiz4Ts,

2.2 HHHEGPEILARSE The interactive activation hypothesis

R D RREELE & AR OB ORANT 1L, AR ANRSNT W B X ) IcBbns 2y, ARDMHEE B SUIRDFRT O M2 RIS F A 2 2 & IC3h T 556 2 Fik
Fir37c0, WO2DHO7 T —FBREN TS, AT, ROLI)HBKRHAZET 2,



o MTLHEIEALARGSE BN CRUT NS Befe S Lo i v b 7 — 2 1B 2 OO BANPISFLE I T\ 5 2 8, ATRHNEM L T\ 2 B ARG LoV 2 ik
ToEMECH Y, ARIDBEA TR TR 2 M ENHERIOEMIL Tw 2 2 EDFRE B> TWw 5,

BT, MR 2 0FEEE T A OWROELICOVTHIT 5, WD IA €F NV E TRACE €7V, Z L TZNS OFEARNZRARE 1B S 2 BN ARl z -~
%, LEOHELOFEICEOBENIEL TWw52, i, TEEE,» SRS NKEHLE EOBRE-BL T 22l 2, MAEMNGE L REA iR & oBHRz
Ko TESEZ > iz ad, ARG E VI HEXZID & R - FERNAHF2MEET 2, £/, AT OIS 2 AR E X ORHgEGesr
Wi oo Nt e BBl 5. B4 DffRE TRY 2 & FHEERIANT, ITEIVRT - HEREAIEERUE, TARTHIEMEKE E —BL Tw b, InETYH, 2L
T o b, o777 u—F2ERTIZALEF V225928, G251k, 06 0FEZIHIOLBIRDOE T VISR ) OREBH 5 L EZ6ND, KiFD
REIC, COREEZEERS L, HANRT? 7u—FB35R%mEDLIICHBEL TR DB THL,

3. G E{E€F )L & TRACE 5L

IARBZBRELT 27201213, ZOREZ BBULL ZBIRNAEFLZBAET 2 L L bIC, INSDEFAZONLCZORMEZHEL, AMOTFH N Y —v 2 & ORI
HHTE D2 T 2HERDH 5, LFEPHEOME DML IEALE 71 (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982) &, Z D11 TH 2 FH Al
D TRACE € 7 )L (McClelland & Elman, 1986) 1%, D &I &L 70 7T ADRPIDAT v 77 ThHH, FILT—FDRY—vE2ETILT S I LICEHAE LT 0k,

XFEHBOMBED TAE TNV, 4 DDFRIIED ) LOIDIFIRI N TR, YT, FhIMBOMIEICH 2BHET 2 XFE LDIHMET I L2 Hf>Tw 2,
Za—n VAR =y F OREEG O 7= iE, R L EXCFLARVICEIEI N TE D, BEEL VI ANMEDEINCIAD > Tw 3 (K2a), BHET 2L V0 H
WIZFE L v =y PRI O BEEER?SH D, &7 VNO =y PRI OGRS S 5, FEMETRIN2E0, TXTO2=y Ok
Ltz 0 & b bFDIEORIEL VICEEE N TS, P SDANBIRREN S &, Fa=y FBHHL, —HEOH 2 1=y M2 h, —HMED
BOFEL=Zy FAIHIE NS (|E D, XF2=y ME-BEOH 2 HEL =y PEIEHLL, HolEaT s e e bic, WEREOH 3BT 2 X FEY F—
T574—F Ny 7%3%%, ZOWHE K2b OB AINISHEA L 7258, S EORRRGEZ R L, BEOWHEY 1 7 LSRR S AT R VR Z o 3
ZENTELZILERL TS, 4FHOMIEICH RN AL, RTHOKTHAL L HIC—HT 225, KEZIDPREDOFETHEE (WORK) 212, 2 DHGHE
1%, MOBFHAT 2HEEMEZIHIL, KIChy 7970y - 2L, KEFESICED RZIHEIL, XFL LV EHFEL VO TANO—E L Z@R35H 2
RiEIC%2 %,

L V) CF LD IA EFILTIE, LV & BESRH SN TWAd, TRACEETFALZIFIUDETEZDOHRDETFILTIE, LD
feidlgEos e L, HHlEL ~VHAOHEERICREL 72, L OVIBOME 2 PR L 72RO Bl X, X ) ROBRB L WGaIC, Satkoflvi
RTHhoTHAEMET27-0TH 5, ZOREICOVTIE, BADLEMAEIELE F L OBz,
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[X12. (a) WEEEITEIEAL € TV, HEE, 4 DDONEICH 230F, FUMEICH 2FRICHIET 2 2=y bD 7=V %ERT, TIME LI HFEL, ZDH
FRICEEN D LFRBICIE T 2 B O AREN TS, F7—ANO2=y AN TS 225, MFIR 2R I»nTwRYy,
RL LT, 229 ME2 2022y b25645 7= VICHRINTE D, 1 DB WRASRKEOEMINIGL, &9 1 2IENETH S,
McClelland (2013)?Dp.14, fig.6 & D #E#, Copyright ©James L. McClelland, reprinted with permission.

() WEEANEHELE T A DAV L FAIRT, RO TIRLZET A AT LA 28R LD, 4FHOMEICH 2 XF 2=y b LHEEL= Y F OIEME(L
DR, REOMEICHIHATVREEL7 X ME, KEREWIXFERAULIICHLTED), OXFEEFE KL A, HEELL



T, WORK &9 1 DOBRIDHGEL T2, 4 DDMEDZNEZNDOIEEALTE—HLTWwE, ZOHFEE, KO21=y b2 A— 192570
1274 —FNy 278, 4FHOMETR ZXHIL TV 2%, McClelland 5 (1986) p.23, [XI 8 & D #£ili, Copyright © MIT Press, reprinted with permission.

3.1 HEIRTE LT TV DR

IA £ TRACE E 7LD W TCHM 2R 2, W€ 7UiE, MG & ROl >\ T o%id T 2B 2, iHELERIZ X D, Grossberg(1978) DHE4 % EIE L
THEFCTEMESINA LI, XFa=y b, 2=y P TLTT 20502 D 4T3, NI, IoUERIEERIOGERRTHD, ¥ a2l —vay
Tk, ML NEBRAT Yy FiIckoCEMEN S, ESRAT Yy 7’ Cld, 2=y b 202y AR ETHEING, ZUd, 202y bABE T2 22y
MCoWTRAITH D, RE2=y M IREEADMHE, 77X, EZEOBANITH 2.

net; = Z [a;]" wij + e

B L IO EAORS 13, D S CF, CED S WE, WEL ST, 2 LCHNOBECOLTZRZRID RS A=y TilEL 7, [o]" L) #il, &
1=y FOIEHEALIED 0 K D REVLHAICOARMEMSIN L Z L ZRL TV,

F2=y bRy PANDEET 2 &, EEMEBRUHE > THEI N S:

Aa; = net;(1 —a;) —d(a; — 1) ifnet; > 0

Aa; = neti(a —m) —d(a; — 1) otherwise

s nRiE, EDMANDIEEALZRAMED 1 ICHd>TIPL EF 5 —5T, ADMANDEELZR/MEM ICH2>TIFL TP 2@f2 kL T0»3, SRAORAH
1%, IEEEZKRIEL L e 2 EFE 20D 5, WEFZIIRHIERICET2 L EZ 6NN NEZHEELTED, NI XA—F dZIOMHEHADMIZELL TV
%,

ZDE TN TOUIIGERIRERINTH 5, EAHTERITH 2 MIH KRBT 2 ABOBRBHISET 272012, THISNZICEMRE, HRE LTS nxbil
EDMERHEMN 72 I I Luce BN ZWH 5 2 Lic k> THIEE R, BRI 28RS 2R IR TE 6N 5:
egéz

p(r;) = W,

BlZIE, K2aD X9 4 FHAOMETXF k 2BIRT 2HERIE, 4 FHOMETLFKICHIET 24Ty 7 Ri%ey b2 LTiRENE, A vTy 7R j13, W
LED § 2 EULELTFIOWTITEINDG, gBAT NI X=8TH2%, a; ZBETHITNIES %, McClelland and Rumelhart 1981 D€ 7 VFEER T, FIPERED
RRICEERTH 5,

TRACE ETNVIE, TAETLADTA T T7EEFRA MY —AQUIICHER L2 b DT, kD% OMEEEORSE X OXFr=y MGl L, MEICAbELHEEL=Y b
DT EN 72 RKELTED, BMEOTRTOREE LOERICHIGT 22y ML, HMEPSHELZ TRTORGEICWNIET 222y FWHEET 2, HHEAN
WY T7NE A LCIHREET 2 BRI OFEGE L 2R v VB ROATIMEICET 6 Nd, TDOXHICLT, XFERRD 1A €TV L F U7 O G ALR]
WEE, 1O ﬂrﬁ“% HFEANONINGEMN T2 2 E03CT&L, ZOT7—F377F vickD), HFEL VB ICHEL VOl %E, ANARY—
LD EDHEIZH 2B 6T, ANV v 7VRINHEM T 2 2 LA L Ao 572, TRACE €7V OEEE, &2 H =X 4 'Eﬁ?éX?LD DERELTTIHE

<, BFEL AL EHEEL )VOERO B ORI Tl 2 < MR 2 ff’]%ﬁ'ztﬁv«;m%f%&ﬂ&?«%ﬂ@5 b BIREZNC /I B3dpiu, FUREZNC cat &) B
EOIRE LI ED, 20 ticket £ VI HEEDIRE L I LD (DL OHEMEDL &HOT) XRE N, s OflFIE, NIET 5 00E m%ﬁnmaw TALDIL=y b
MoEICE D AEFN S HF2) 2D kI Rar=y FORSIOEREIE, FREANOUHEROBNRLE L —A%2BKL, ZOUXETLOLAHOBKLE Ko7k, F
72, ZIFFREICBEYE & 172 € TV (McClelland, 1985, 1986) T, 1= FRERZFHEET 2 2 L%, MBN—FT7 27BN 605MHZ ED X 5 ICHET 2005
Srani,

B 2 g ko728, TA £ TRACEDE TV T, XFEEFHED ATy b ZHINCEEL T\W5%5, TRACE T, BEET2A0v o TEENE
B EIBRIEDY ZEL T3, Normis (2013) I k3T, E55DEFIVHMEDAMHEMLEZEZERITNEITH Y, B AMEISEXFETHRIGT
BHZELRLDL=Zy 2T 2 2 3 TE 2 (FIA1F, TRCK i3 TRXY & b 13 32:02% { HiEETRUCK ZiGELT 2133 CH 3),

4. 1T Bh FINREL

4.1. IATFIL E TRACEEFILDORER LN

IA €7V ETRACE €7V, XFEEHRORMENRELTED, XFPEHFOTRICE T 2 HFEOXIROEE 2R TL  OBl7T— 2 ICE L T2, #IofTEi:
MEEILD % < 1%, HEEOBMMSIROMEL LTE LD o6ND, LFEEF, HBEORTRRINLGY, PHTIRRISNLGEPLED 7 v ¥ LRI TR S WG é
0y, XOIEMICEIRI NS BIA I Reicher, 1969), F72, ZN5DETILI, BEURABBATDEHE AL, FFHOERN 7 SURICOK L 72 3CERsHE . LT
SN2 ARBEDSE O & ) I 2 RIS & I LTV B (B 213 Ganong, 1980; Massaro, 1979), il 21X Ganong(l‘)SO) 1 /k/ & /g DIEDBERZRE DS " _iss « DXHRTIE /k/
LA IR T KL i OXUWRTIE /g LIS NPT VI L AR L, BEOHROLFICH T 2B, FEWRERHEED X 9 R EHUREE (LEAT $° TOVE 7% &£
McClelland & Johnston, 1977) DD ILFITH K5, HEEHMF D 1A €7 VIE, LEAT @ X 9 ZEEHEDOSCFDS, HEES L < 2 WIEHEE (LTAE 4 £) o307, XXRZ& LI
RSN —DOLFE L) S IEHICAR SN LI BEREZHAT2H L WETFT L THo 7, TD LI REHEER, SA5NAANOUEKELWENS, Zhs0HEL
=y MX, BT E2LTFOI=y MIKR%E 74— NNy 7L, Z20% I3EEORL 2 HEOTGHELIC X > TR &3 (X3), Newman, Sawusch, and Luce
1997 1%, ZOFHE -T2 &I, BHELEH 7 AV OB 20REZHIEL 72, IAET LTI, AETELLNFINEENIXETHoTH, %
COYMGED TLEEEE) 258 28554 (A 1E SLNT D L) 1%, FSOFZT R TS (SLET) K& EFN LT ERU K 5 Lol %2R L FMETE D, Rumelhart
and McClelland (1982) THifi - KTk, O PRSI N,



CAVE MAVE

activation

TIME TIME

[¥3. CAVE & MAVE IZ X 2 W 5H8EEALE 7V COHGEL NV oiEtk L, WBHhOEREOR T 0 22 T _RTo2 =y b Diftk{Lz R
¥, WEMALOERNZ A 7y FENTED, BRAHEEDEHCLDIEER LD SIS > TS, MAVE DA, 4 DDOLFED 2N
FHUCBWT, HEOHEPIRRINLXFE R Ly 797 v THXFFT %, McClelland and Rumelhart (1981)9 fig.13, p.396 ¥ & U fig.9,p.393 £ O

IA €7V L TRACE & 7V O EIEHACAIES &, ORISR & 72 2 ANEROBICOKR S REFETH, BINOMICE2EHETHRID I 3B THEING, D
FHNZ, B XRCT ORI 2 EANICERIE L, S SCTFE T ORI SCTF ORI 2 2 I FROMGEE S 1, 8 S 4172 (Rumelhart & McClelland, 1982), —fi
12, TRTOXWRSCERSIE L F ORBREIE B 5.2 5, A, SEERCE T 2B, HEOWESHEL T TR, HOAASTEPHBEORKGEIC
LT H 4 U (Ganong, 1980; Warren, 1970), % OISR IZ G0 HLEE O SKRIEHIC £ TR EWIZED H 2 (Sherman, 1971; Warren & Warren, 1971), b5 5 A, T KakslHUE caR
FPRRG L A Y P OEBINET S 2 LR ERINLYE, BEOURIZIZE A SHEL 4\ (Fox, 1984), TRACE €7V T, HAdakic B 24 2BHR FHO
Pk HEEIC o HE T % 3EH R — A0 5rE],  FERAE AR (KuhL, 1991) % £) IS MG L TWw 5,

4.1.1 FEIRFRRLERHIFI~ D N i 5P D FEHL

TRACE € 7V ZHFET 28 L 74 o 72 BIRO—D1, EHAFE I HFEOHBIAHH Tfibi s L\ ) B2 BT 23EL23% > 72, Marslen-Wilson 5 (& Z DU
PINCHEHL, HEHEANIB 1 DOWEBEEDH % HiEE L —KIC—3T 2 L ) ISR > REBRICHRN M Tb L2 T & &/R L7 (Marslen-Wilson & Welsh, 1978), Z D%, HigELizD
<2 v IV JHETOMBGER) % FR7- % ORI L D, SUIR & RO B ER T c LI Z MEICHIFI T 2 & v ) —BFEMSLR SN, s offEodicia,
1977 41T Rumelhart 23768 L 2 X CRE SN T k) ig, FESFHENLUTAL EEFNLERANOW G2 &8 00RH 5, ZoHkzHuiRyoFEBETlE, #
T2 SUIRDS,  HERBMIC IR 22 B O AR ARIRIC 598 % 5. 2 5 2 & A% 4172 (Chambers, Tanenhaus, & Magnuson, 2004; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy,
1995), % DHOHTETIE, Hahy - MRV RIS, EofifEmME2ZR T 20%2HiT 2 2 L RSNk, HlZiE, Dahan and Tanenhaus (2004) 1&, climb & V> 9 Bzl
Zilw L EiL, ZOTHFATHEESNLZBHEONRELD I Z2bD2RAT I e 2R Lk, BEEAILE, IhoOXRNZPER, HIRL 22 BRIk
T CICH B 227 ) (Dahan & Tanenhaus, 2004; Magnuson, Tanenhaus, & Aslin, 2008), #T L WIEHAFIHAIEEIC % 2 EMRINICHEFTI SN 2 L TH B, TDI LI,
Allopenna, Magnuson, and Tanenhaus (1998) DR TRICHIEICR I N T W3, X561, ANDA VLY P E—HLARVHERE#TH>TH, ZORICTAREHATINH
NI SN2 2 LR ENT, NS DHXD% 1 TRACE ET AR, FARKOEEICHKE SO flLENAETVEZAVT, ZORREZY 2L —vayLTw?
(Spivey & Tanenhaus, 1998),

4.2. NRENR D %2 75§ kL

XFPLHE RO BT 2 HEEOSRSIRIE, NEEEII BT 2 W80 BE AR L 2o TERLY, ORISR IC-BINT, MELRMOS S F AHERCED IR
I3, Bz, HEZREEFERC, HFREERICBT 2EEED I, FHFECR A HEOHEICR AR H Y, ok BIREEHFEROMELE T LT
CHHE N5 (Dell, 1986; Dell, Schwartz, Martin, Saffran, & Gagnon, 1997; Rapp & Goldrick, 2000 % Z:[i#),

AT, RENRPEREICE T BEARE 2 22T, STEEMESIR L M, B2 E0MEIERY ORI & > T % 2 £ 2% 2 (Hansen, Olkkonen,

Walter, & Gegenfurtner, 2006; Kubat, Mirman, & Roy, 2009), f#il 2 1¥, #fal AL v P OHBAOBERAEIE, A7 — U ANROXHRTIE X D H#fIL, =P rvoXRTidLD
FLyPIARENS, X502, $RT % Elman and McClelland (1988) DFEH: & [AFEIC, Mitterer and de Ruiter (2008) 1&, M-SR 7 4+ — RNy 7 53ah 7 37 % s
THILEER L, ¥, KanizsaKZIZ B % 64 RESHENEREHR (Kanizsa, 1979; [X14) 1, HHATGMA LD 6 PRI NS k)12, HiZREOXIRTS, AJidsidsa

CRZZOIHZARIEL I ENTELZLERLTVRS,
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T, Ericksen DN Z L8 (flanker task) 12 8 1F 2 I & 2 WD ZEFHE 7 V3% 5 (Cohen, Servan-Schreiber, & McClelland, 1992), Z D€ 7 LTI, Hir 2 22Nz E %
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2. LL, ZOREMNRENERZHER L 72T V0L, XA RANZAKL, YPOERCTIHMEE 2ok T =7 225 2 L TE 3,
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DWTORED, A RHERE TN NEDOFIRFIED 5B L 7B IRG D8y — v ZEAR T EPBIEI N, S0 X9 dlbilx, WIICHAERRZ2 A
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Fig. 5. The letters A—Z as they are represented in the Rumelhart & Siple font, with the full set of features shown in a single block below the letters. From fig. 2, p. 101

in Rumelhart and Siple (1974). Copyright American Psychological Association. Reprinted with permission.
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Probability of Letters in Context _OOD

0.25
[ ICalculated Probability
[—_]Sampled Probability
0.2
2 0.15
ig
E 0.1
a B
0.056
mmlﬂmm mmmm mMmmMmIOMNmmolllmmm
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Letter

6.4 XTFDT 4 A7V A DRHIDILEICS 5 LTFUTDOWT, EEGIRI N RRMEER L, SHEAMATEEN JA) ET 10X 7 A
7V 7k 2R E D, K, 4CTFORSD 1 FHOMEICH 3 XFOFRMELRZHE L DT, 1 HHOM
EICREEIMEEIN TR VT 4 AT LA DRI, 2%H, 3&EH, 4FHOMIEICZNZN 0,0, D DRHEEMERIC



BEINLHEDLDTH S, KEDN—IF, | FHOLFOMEIC OV TEHRI NI R AFRIERZ TR LTV, s DR
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5.5.1. MR & HERINGH R 2RO T 2 72D DN & BB

HEIFIORET, BEMAETLDRY b7 =7 DEHREADMI 2 ERT LIS, DI OIWERNLRONBEZE 7O LHELS L1 b Lk, Rk

B, V7 Loy 7 AR ES) PCEZICBEET IR 27 0 v VEBCHEHT 2201, v FOANZRAICESILT 2B, ZoNEEREIGICET»S TH S, H
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&, Hopfield (1982) DT FLOFNEZ R R ILY 2 v 2> Y EMAEIELLDT, Z2OREEMSL, 06 DETFVIIRENIZ, »$—% 7} B~ (Rosenblatt, 1958) %
&C, HEAMIFINEE2MEL CHiEL KT 2%EcH2 vvhry 7 - Ev Y « =a2—8 Y (Pitts & McCullough, 1947) £ Tl 2 LV TE 2, = a—n V(38
L HIEOE S 2 MAL, BHIGET 2 LT L WIEZER, bEIA, MRENEEPEET2E7 V= 2 — 0y O ENLREBRNHMLTH S, DLk )ICH



b INIZET V= 2a—a Y DOAINTIEWESD T R ) A ADEEET 2854, FAMRIE, ARTEFRBEROANTORY AT 4 v 7B E &I T 5, g,
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DAEEHEAE O W REME 12D\ T McClelland, 2013 1),

EARMICR T &, SEIIHEL VDKL PADOHIANZEZ S, ZORG, AN, HEOEBNHERONBEERET AL TRAEHE, XFLIVOEZLZy b
DIEMALORIZ, W=y b EXF2=y FOROEREAZ DT LEOAITHKENS, HBOHEORYOAT v 796, HMED 1 DOXF1=y  OiFHEALE
Z1C, OTRTOLTF 2=y bOFEELAEZ 0 20T, HiEL=y b i NDMATIUTO LS 12k 3
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2IT Ly WEkONBILHZT 774 7HRIFLZy P EFET, 2T, e £iHT S L, EREFVET, ZONEMEROLOIGENINBHERE, 20N
PERENT LA ICRESCTPER S NBTERP RO oD, ey 7 bey 7 ZABIBICAND LUTD &) IK7% %:
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INEZSECRETZ L, HWFHEL=y MDD T 7T 4 7LD L L GRRINBHERIE, 2 OHEEOFHMTOHBIMERIC, ZOMWFENT 7 T4 7HLFEDL Y b
EAERLZTHLIMREZBHI bl T 2, 22Th, Tiud, FEOHFEIIIR SN HRMERZERET 2 X4 ANOHEANLHMEZFEL TV, 08
&, FHEHR (p(w;) TEIND) L, HENLZSNBAOIHLO TR (ZOBART 7T 4 75 D52 605,
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AL I N2 HEREZ R TR T O X H Ik 5:
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Z NG EDXFOMHRIC, XFBEZSNIBEOIIEDMEICH 2RO vy FOERE 1/T TR7r—Y v 7 L boic s 5,
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2 ETIE, ARRICHER SN R RO 2 ERE TNV OEBHEEL S, ARPY SV SINDZETAEBHLCEL, IITERELATNUE RS R VD
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WENDZEDRHD05TT, 2HBHDMIEIIC A ZEGUHFED 1 OBF ) v 73Nz e, 1FEAEDESE, MIET5XTFELTAMNEINS, (HH:S)
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BEOARHIWIRT 5 2 E2fliHICRT I LN TE R,
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X510z, RBLOFRIMERICBET 24 P A2 HAAL DI, Hb 280220 TES, 2 OBR (Movellan & McClelland (37 2 AT 14 v 7 LM £ BEA ) 13,
SR & FRE RO I FRZ HRZ L DMED T = I2B VT, 2% L LERIISKIZT % (L E 2 —13 Movellan & McClelland, 2001 2, —2>dfiI4+ & L T Pitt,
1995 %), LHIATTIVIERIP AT 4 v ZIEEEZRL, ZOMHEAFEE N7 XA =2 (1) DfEICEEINLEVLEINTVS, T, TFLOFHICE T 2 HliEEE
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T4 v 7 NEEZ R E %0 (McClelland, 1991), W EIUZLTH, MIAEFATIER S AT 4 v 7 REEBR N, TV FLETFLOZDRAZTERL T3,

nY AT 4y 7R, IATTFLDOMDE L DN =2 a v OEEEI NS 2 ISR T 363235 % (McClelland, 1991, 1998; Movellan & McClelland, 2001), 2D & 9
R — ATIRECANICEIT 5 2 L IFWNEEZ DS, 2L —2a vy TRIDKERBPED IO ENFEIEINTVE, P AT 4 v ZMEMEZRTEMIZ, EFLADA
HRETFIVHNOMBEIZNET 28 EZI) A bDTH 3,
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MIA €T ADHHNC LY, A RKSUHE> T, MHATEMAL2SER I CROE 2 HIR RO RVGIERMEZ LA T L, ZLTMIA ETUH (A ETLVOMOEREL £ H D)
T=FICRONZ0P AT 4y INMEEERY =V B RZ DI EDRTELZIEDPHLPICE 7 L2 BIFLTVE, B 5A, MIAETADPABOHMEUEORREDET
NTHD LD, HAEEPARBEREO-HTH2 L) JEZE®RT b0 TIE ARV, B, B, REEIOED K OIS EENIZLER G E FRL, AR
HATHBETFT N EERL TS, 22T, ZOMEICOWTELTALT,

6. BN AT LI 4 — NNy 2 3NBZ LI LEDN?

% DWRED, XFPEROMINCBT 2 RENEE, 74— F7 47— FUHORIREL, HIEE SURBEROME1EZ OB OPERBCfibN 3 2 L ClbIcEl
BHTE 2 AL T % (i 213 Massaro, 1989; Norris & McQueen, 2008; Norris et al. 2000; Paap, Newsome, McDonald, & Schvaneveldt, 1982), FIFETEH & SUIRIEH % HiA L 72
HEHDOPEL NV THIUE, HHPHERERI PP EROBINCED L) ICHET20%2HI T2 LN TES (M), LEid>T, InsoFEHIE, WAL
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* (a) Massaro @ 7 7 ¥ —imBEITEE 7L 1 X 2 I & SURD IER O DX (Massaro, 1989 p. 401 [ 1 2> & HE#l Copyright
©Elsevier Ltd, reprinted with permission. ) Massaro @ [X| ® A & V OEHIE, AT L 7 Hl & SUROZEBURIIG L T
%,

o (b)3 FHIDOHBIMEICH 2 & 7" X ¥ b 2T B 720 D Massaro € 7L T S 412 R T & HRIR T2 553 2 720 0
WO—I DR 7§

« (c) MERGE model of speech perception (Norris et al., 2000) ? 7 — ¥ 7 7 F % (Norris and McQueen, 2008 fig. 11, p.384 X  Hiii

Copyright © American Psychological Association, reprinted with permission.
Bz, HAGE LA TH 2720121, 2 DOEBLTENH 2 L FRT 5,

LESDRBILAICHT ST, LNV NDS C OAET, oliZa RIS 2 R IHTT 5
2. 25 OB DK REZ TR EERONITHMTEZLHICT LT, OAOLIEP, FUHEZE?LSAIT 28, /v 74 v ofiRe bk s 30
Bt Z TREIC § %

INHDRIZDOVT, il 22D THETT 5,

6.1. Bl & S Tl 2l O I INF I 3

MWHNZ 7 7’0 —F O S %2 mHT 2 72912, Massaro (1989) MRE L 727 7m—F E XL THA L D, Massaro 13, FIRICE T 5 UK EFEOEREZHRAT 27D,
R e wi A E R A PRI L 7. Norris & Z D FEFIFZEE (Norris & McQueen, 2008; Norris et al., 2000) 2M2LE L 72 7 70 —F1cd, FAKRO Y TIEE 2,

Massaro D€ 7))L, FHEI N 1 DOHBEEHZ2MEMICHERIT 2 2 L Icfi 28 TTws, HlZiE, Massaro % 272 ¥ A4 7D IR (Massaro & Cohen, 1983) Tl&, H
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p(s|r) p(rlc)
p(s|r) p(rle) + p(s|l) p(llc)
Massaro € 7V (IXI8a) T3, b 1 FRUERIKIC B 2 RN Ao IEAL X N fEEMINE T 2 A2 5HR T2 LEL Tw 2 ({9, HHITREE, LdojHa
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L) FiE, 1 OMEICH B WD S 5 TRTOEHRICOWTO p(p|f) DfEDORZ FAEEL, {p3}icou TR, ftp(rlc) &, RLREOMEICATZ

NEHEEOHERD TR TORGEIIN T 2 85HS, SHFEVEZ 5N 2BHOMBEOOMEEZB I b0 L LCGIRTE 2, Jhud, Kokiie, HFa=v b LHEE



2=y boMoEREARZ, | HHEERBEOME TR A, 2 FHOME TN 2 LY T 2, KIS, IO p(r|s,c) &, HRANE, 2FHOM
EOHHRICH L THEINALR P A7y THER L 2ladbe T, EXzHOTHEShS, ZoRHShEERZHOT, #Ep(r|e,s) O r G, 73R
p(lle,s) =1 —p(rle,s) D UBIGDER S NS, FUHEERTr INEEZERT MOV 7Y v I R=207 7a—F Tk, 1L 3MVOREAIICEIOT 1 20EH
ZHERL, RICINSDFHRDARIIEDTOT I DORGEZBIRL, BRI NHE L 2 MLOREANICHED O THARDOMETr L Lo 520528 RT 2, wIhol
AHFHEIFEHIATHD, Massaro EFABHEL T2 k9, HEEEIHT 2SR o 3RE &Rl Lo/ izl st s ng,

22T, Massaro D7 4 —F 747 —FREL, FHBD X I ICTRTOMEIK S ROFEZEH T 2HAEEL T 7 —F %25 L TA S, Massaro €7V TlE, kil
DEFE, 2 BHOMEICH 2 GHROBHRMEREZFET 22DICOARELTH 5, Massaro and Cohen (1983) DHEEH/ ST &' 4 ATlE, HEUIHFIC 2 FHONMEICH 5 HHET
boteoT, MELHEEbNZ2E Ltk (X8 £2M), L2 L, Reicher (1969) % Massaro and Klitzke (1979) DFEEiZ XL &, 1A ET LTS T 51T LA EDFER
Tk, EOXFDY =7y bXFEICR D, BTOWMCEMEIFEL»D 2o 0k v, IRoDr—A TR, FEIAETTNE, 420METNTITBNT, ELw
XA ZOFHRMERD SRARFICY Y 7Y v 7 $ 2, 618, MIAET VL, ARABHEOSMH» SOV 7L E LT, FRARAKXFOMEZHNT 57-00HHEE L
T, HEELAAVCHURRZEMT %5, Massaro €7V T, FMEDOXIRERIZ, ZOMEPSOR LTy 7HERZHRIL T 5720, HEBOFINICBHE S 2 FH
DRGEEREB L R>Tw2, 2FD, 32OXFEEUANINLT, 4 00RLZHEEL VORBBEE R, 1 DFHFEL L, 1 D3 XFOMBEICHEE &
% (HE:10),

I 10 Pearl (1982) 2SR L7z &k 912, HMED S EOL VIS I NLEHRZLEEL TBE, E»STIRENSE by 7OV EEhs Iz X vy
LAV TBIENHETHE, ZDTA T 7 DHEEHKIE, Rumelhart (1977) TH %, Pearl DIERIE, HROMHAMFHE T VORENRIELEZ 0N
%, ZO77B—F & MIA €T L DI McClelland (2013) IZFEHiE TV 5,

6.1.1 MERGE 8 X OBJHEFNICE T E 7 4 — K7 17— Fil#&

Norris 5 1%, Wik XFFEREFEHEOMEUHDOE T IICEWT, Massaro D7 70 —F LIEFIC X KB 7 7'm—F 2§21 L T\ 3 (Norris & McQueen, 2008; Norris et al.,
2000), Massaro € 7L & [k, HXFRFHICHEL Ly 7P VHBOEL W7 4 = F7 47— Fil#iE, TRLVNVOEH I LI %22 @A, #hEoEHico
VT, DTN TOMBOFTRICHE DO CHERENSNRZ ST 205258 2), Ko, 7=7v P27 X0 OB 2 UROBE 2 ERBT 2546 BIAIE, Pa
TOERYD 2 DD 7 AV P PRED R 7 X v OG22, MBI, BHID2 20X I XA Y 6Dty 78T v OMENERIER CHEER 7' 2~ MMER
Lilatbans £013, AL AV MCETER LTy 7OBESHEEBARL NV OMEICHER2 52 5 2 LIZFFS L5\ (D, Norris, £ME, July 2011), L2 L, #HH
ANTREF LAY P OERVEHEL TV E70, IhE2ERT20MEETHS, 7, Ganong (1980) DHIUNAFEED X 52, HEL I XV M2 /g £ /k/ D
T Miss" F 7213 ift" DL HEEDOSURDIRAI DX 7' A v b TH B5ER, BRI % 7% TRDEEE D HEEICE U 5 FEER (Warren & Warren, 1971) D & 912,  #it DSk
DR EEZRT S E, FHESIZI ST, ZOMBEFHTI0IE, F—7 v b7 AV MCH L7 AV FRHEGEL VB2 52 2 2 LB TERTULA S
B, AR AV MEZITEILENTERVEIICLAT IR SR, HEETATE, T0X)REMIESOELR G, TRTOMEIS 5k EoEHRE,

ZNTNDONEIC D 2 K HEROUIICFIFISHERZ 5.2 5 2 LB TE, SERICHTIWER, ANOFEITELIIEGOERICHT 2R H o N2 LHITIINS,

B2 L, LDEEICEY SIEMEEIE T VL, HEOL LR L XV NOEEONE TR RS R Z ARICAT T 2 L2 ko Twiny, IN6DET VIR, R
EDHBIEE %23 5 72012, SR EHEOEHREZ & 2 UL OV CHEAFHT 2 2 LICEAEZYTTED, HRBRMTRN T, EEEEA2% 0RZ ZL X
WVCRHCIRIRT 2 Z LD HBETH 5 L I FEE - Tk, —H, HEETFT LTI, EEZLVUP9L 0V NORA ZEICH 28RO LB, a3kl
§l - 4yH - HEREHRORT, MHEIHKILA) 2L TES,

6.2. HAINLBLD /) v 7 F V%hH

R, 74—=F747—=FEF VKT IHENET VD 2 OHOAICOWTE LS, MHAERMICKD, ROWEPARRZNOBGNBIEEL 525 2 LD TE
2, 20X RRICE, BRI NIEEOELEDRICIFET 2 BEEH O WMIEADED, 2 OBOBBIL 72 AT DWIR~DWE L E03b 5,

6.2.1 BEE S 2 AJIHHAND ) v 7 F v DRGA

H—D ¥ A 7D’y — A% Elman & McClelland (1988) 3% 2 7z, 6 1%, IEFHEOME & L THIS N2 FHAMEBIRICHE H L 72 (Mann & Repp, 1981; Stephens & Holt, 2003),
HMERIE, HIEFROFKFDPPESTEOTENEIICE Z 22 MEL 03 X972, BIZIE, /5/°/8/ ("sh") ICBBEL ZE0lE, v K D &9 mEGEoE L5
DFFICOHEELEZ, BROTOMBEBNEEZZELSE S, MEHFFINZHI LT, KD EMICEHETE2ESRT 2P TEL, LEd>T, M E /K ORDBE
BRZEDS, Js/ DFATT B0 K/ E LT/S/IBEITT 2581 0 ELTHZ Z2EARH 2 LEZLS S, TOLI) HIRWTE, ERECHIEOZDNH 2 &, K77
279AT 4 7HEDIEERDIFHBIC R Y, WMESR7 4 —F7 47— FY AT LD OMIEQOOERPIEONTLE), LaL, ZOEREESHEHEINICHTD B % 30Uk
DHRTHEL, 74— FNy 790K L& D AMBEO B ERS OBEICEEZ 522 2L TENE, ZNTHHIEEI D, BESHEOHBMNILESNS, Elman
& McClelland (1984) 1%, T @ X 9 %AliEAIEZ A AL THM%Z TRACE €T VD 1 DDO/N—Y a VICHAIAR, GEHEZIEN L L7 coarticulation RO EZ S T 2L — b
L7,

Z D%, Elman & McClelland (1988) (%, TRACE €7 ADFMT 2 &k 9 ic, RN RGILEEFEOME 25 R T2 ) 2l FEZR2iTo7, FEBRTIE v £7203
I/ DWERIRF DRI /s/ & /S/ DHRFIOBER A BERE 2T L7, 2L ¢, Z OMERAEBEES ORI /s/ 12T % b O (#: Christma_) & /S/ 12— T 2 b D (Hi: “fooli_”)
D2 DODRIL BFERIIRD TR I, L, BREROIERUMICHEEZ 52 2 X ) Thiud “Christma_" OBFBRA BEEE X, FENICIE 5/ O X9 IR % 5
WV, BREOEEOMEE K/ IC> 7 FERZETTHS, WIS, “fooli " DM U ML BEET L, FEINC/S/ DX ) IR, HBEOETROATE / DHIAICY 7 b
2T THD, THUIE ST Elman & McClelland 23FE R L 7R TH 5, 2 OFEHITFEMIH S 11TV 228 (Pitt & McQueen, 1998), #HEDH74 2 %= T, Bz #
M 7% fdi > CHBLZ 41T % (Magnuson, McMurray, Tanenhaus, & Aslin, 2003; Samuel & Pitt, 2003), L4 L, JEWEEMO 7 7o —F 238 T 5 Acbid, o, ROKKZ
X BICEH L Bl % B8 L TE D (McQueen, Jesse, & Norris, 2009), Z D7 —< BT 2R IFHTWw 3,

6.2.2 FIERD A N1 % ROBESITIBS BBED ) v 7 4 V3h#

fhDiFFEE 72 B 1%, FREINCE T 2 ERISIROEEIZOVTHIIEL T3, ZABHANSHHIC K> TFHlE N, #EREIE X, REORBZ/ED KL
RS2 ET, VN RTEED R LR SN BIT AR n X S ICAIR IS v, JHE BN AHEERTH S, DR LR SN REE, Sz i k
DHPTVARVWEMEINSE L) ICh2, THRAEOESA, H2EHE W /s) ZEVIELIERT 5 L, BHRAZE W /s & 1S/ OFE) MBI DR (2 D8é1% /S)



12> 7 9%, (Samuel, 1986; Samuel & Kat, 19967 £), §hft% /v L 7BIIGEIGZ FHAET 2 72012, st BRAERZLIE /A AN—ZA MZ, 1| DORROAIC—E
T BN 2 SR CRED IR LB L7z, WY bronchiti <P arthriti 72 &0 /s/ 12> 72 IR TR S L2854y, SBIRINICEIG S 172 KBS /s/ TH D . aboli_ > demoli_
2 ED S/ 7 XNRTIR S N h,  IERINICHEIG X Nz KB /S/ TdH o 72 (Samuel, 1997,2001), D & H 12, FEEEEHRDS E ORI I 2 B INICHEIR X &
2HhRPEL, ZOROEHK - MEERNIGEE 2L 2 Tw,

McClelland and Elman (1986) ® TRACE € F AL CTFHI SN T0ie, FEE7 4 —F XNy 7D/ v 7 A VRO 3 DHOBNZ, HFHEh T3V -0k 2F 2 —=v
THD, FEHTIAV—DOBEFIIMANC > TRL LD, VAFT—PRLEZAC=A—DFFZIELHBIT 270101, Z0X)RFa—=v I PLARTH 5,
BIZIE, WEEE AL VEEOZIE, b L p/ DA T Y —oHLE, FHEBRIE LIRS TREZEINCEET 2, 61, MDA, THER
F oM DERDEM DB NI L > THEAEN DB Z EHB%\, Z LT, Norris, McQueen, Cutler (2003) Z1Z U & FT 2 WL DLDFEIC LD, FHEMBEICBVWTHEBEIZZD
£ BT LN TS 2 EDRE T S (van Linden & Vroomen (2007) Ti&, B2 6 OREMN 2 F230 ) OFFICEM L 22 R e s, T ORRoERDIED
friEl, FEZIRS-BALL T, ZROFRICHH I Ner > LHFEORTICEE 2 5.2 2 L\ ) LT X > TEM I 50T 5 (McQueen, Cutler, & Norris, 2006),
Mirman, McClelland, and Holt (2006) /%, TRACE ICHiffiZz ~7 DB AZEML, FEFHROBEREFE T2 L0 BEHT2ERMGREZS S 2L — L,

& DM 1Z, Friston (2003; Spratling & Johnson, 2004) %, b+ v 7’7 v D7 4 —=FXNy 75, HAHEE X CRAS AT LRI RN 3 BENARERZ 28T 57010
WETHDETFRELTED, HE ORIV Fy FT—2%BF7LIY ALICEWVT, 51D T7 4 — Py 73R SNTw5, AEOEHRK7

4 =R 749 —FHGOLR/HEIZ, HEDLODT7 4 — PNy 7ORBEEZBDTVEE, ZD74— 2Ny 713, HEEE LT VOUBICHEEEL2 522 T4 54

Vi D74 —=FNy 7 LFRA%ETIER EFRLTWS (A1 Norris et al, 2003), F4 1k, 74— PNy 725015 L FRRIC AR Z2E 2 ENTE DR, MM HHE
PRET 22 L2 FRTZ, 61, bL74—FAy 7222 EoThiUL, ¥HINLRBEBLRWICR LTy 7L by 797 v oEROMAEDE &2 KT

22 Eick, REAKRPHEWLHICE T 2%HOFERTH 2 LAKICARENLZ LD THE EE X5,

DFD, 74—FNv 27k, XREOHIIC X -T, X DRELHEL (§iEER L) OBEE (LFEPEXEL L) OR—EZIET 27213 Th<, ZOXR EOPGE I -l
WIRDFER DS, BHEEE QNI GHEHEOMA) ®, MUHEKZOZOBRONBUCHEL 525 2 LB TES (HIG, HFa—=v2), 74— X920/ v 74 ViR
1%, FRICBIE by 7Y VOEFENR 7 4 — NNy 7 ORI LREILE A2 2,

7. A H AP O plie S L

7.1 FEBERRIREREE DAL

MEOMIRIAI AT 208026, WMNTOMENAIOBFEENRBRIN T2, HANZLINE, MOMEDEARNLRRHIC X >IN TS, HIKETIE, H
WA DS B A THIE ) BEXH 2 L2 AT, e (FFICIZE 200108y Ty BERDEET 2053 % (Felleman & van Essen, 1991), UK T %% <
DWFETIE, B EIETHICH 2 L& 2 62 BB (1213, B oGETeRET) 208 gt 2 & —XERO RIS L2215 2 LAY
MRENTEY (HIAI1Z, Hupe et al, 1998; Carrasco & Lomber, 2010), EDMILIC B 2 HEEHBRB I N T3, TAX VLM, VHENCHFET 2Ty Y
WK 2 VIO Ty P, LU D2, A=y 7 KIEOHENATHRIEICOKIET 5 2 E%b 57, VI TOSSRINERZEO KT V2 TORIE L h BN Tl
232 EDbhrh, VI TORIBBEROBRTUIEN S D7 4 — BNy 712k B5bDTH 5 2 LWRBI 17z (Lee & Nguyen, 2001),  [Ifkic, MWHREZE, VI/V2 254
KO KB IR E T, % OREZURBERO =2 —n vH, KROAZHEE OBEEZRL 5056, MHAICHEZHE S, HAEIOEE LT 2 0Ekch % L&
Z 5% (Leopold & Logothetis, 1999), #UHHIVATHIN & RUERTE O B CIRBE 2T FICERE L Cw 25HLE, & N OEEWERERO KR (MEG) ffZETb R on s Bilx
1¥, Bar, 2004),

RILE S T4 HDEDEALRADED Ly TF I D7 4 — PNy ZITMAT, MR T, AREAR O LR O 7 0 25 7 4 OMEAEHR S
LTV % (L E 2 —I4 Ghazanfar & Schroeder, 2006 i), k4L ->T, ZD LI RESY 7« MOMAERFIE, BEREHZMERICEIT 2 L VEOBITHOHEIEH &
Ffkic, MAHRFEROEARFEHOGITH 5, BRI, ZRERRE 7 138G KB (Bavelier & Neville, 2002; Jones & Powell, 1970) ¥ 72 |3 WK E (Rizzolatti, Riggio,
Dascola, & Umlita, 1980) TfTh# 3 £ ERT 2L D9 H 25, REDIHLTIR, HERICBWT, s OEATHED S ~RIEEEE~D Y 75 v ASIOTFE
PRI E TV % (Cappe & Barone, 2005; Schroeder et al, 2001) 815 (Falchier, Clavagnier, Barone, & Kennedy, 2002; Rockland & Ojima, 2003), % 7 HEFREF 7> & —RKEFEEF~
DIEHEAT] (Falchier et al, 2002; Hall & Lomber, 2008) 5> Z DD AJJ (Bizley & King, 2009) b & %, B KL E 2> & OV 2 #5813, )L (Falchier et al., 2002; Rockland &
Ojima, 2003) $° Ui (Hall & Lomber, 2008) TH B INTE D, N6 DRIV OFEEEICIBS 2L 2 ERBINTVS, 61, 7Ly FowiLFr=y |
RS, AlFHBO= 2—0 v Dfy 20% BEEHKICKIG L TW5 2 E28b > T 5 (Bizley & King, 2009).,

AR, BB L XV TH 7ML E T 0 B & 5 ZISFEM % £ D) 2 3EHLAH 2 Ty 5 (Ghazanfar & Schroeder, 2006 ), L %, @EICHEAEMR
BIEYENRD, ZERIEMLO 7 DIEBDE YY) T 4 226 O RERENICHERICHNT 2 2L 2HRBICLTWw L2 RRLTWw» S, ZOMRRE, BEICHAEERNZ
EVPENRICE D, EBDOESY 7426 ORI EREFARFICHAL T, ZEEMPBEE, SEIELRESTEHEZT) L TELLEZ SN TV (Lewkowicz
& Ghazanfar, 2009), Z DMHAMMERIE, <KDL R, L DESY T4 ORBEFFEC, 2 oER—-HL CEHT 2 2 LICKE L RMAE % EfTT 5,

7.2. N DS ALBLO I Bk 12 35 V) 2 R ELPE

ANE OSBRI 208 TlE, MANLESREEL T —<th>Tw5, ZOWRDS L, H—HiEEHEoO T=fE 7)) (Seidenberg & McClelland, 1989; ¥
L 02 OBOIR) ORFAD T TITbNTER, ZOETME, EFHE HH BIOEKLLO2=y FORFTINARBEI TR, P8 INaHEBICKRES
LML T ADA=Y a v E QAT I ENTES, I TR, K9ITR L EMHADH WA OMIEICEME YT, FHREEHREONIEED YA v 7L

A, B LOEHE FFEONIICN T 28RO EICERZY TS, ZMATTLTIE, EFLVEROBFAOREGHE, ERAEkE, EFHE L FHEHOM O
Y — v DHGRITEI NPT VI LIS, BRI, HENE2EEENGEEOBMERIND &, REXE, HiH, EROEZRHABOITWOMEAIRAI TR
ENBIEDD, PHELEBMLETTICBLTIE, BRIk o Ty 2L I NS &, FEERHAEROMD L F0—HIEPRE LT L EHORBICEER 5

ZBEFHING,

R BEERR O MR Ic D W T, SR UHIGE B @ Visual Word-Form Area (VWFA; McCandliss, Cohen, & Dehaene, 2003; Dehaene, Cohen, Sigman, & Vinckier, 2005) & I
BN ZHEHOBRENKRELS 70 —X7y 73N T3, VWFA L, IEEED TAJ v¥varv e UOBEL, BEOHRNABEZRET 280 chd 2 )
(Kronbichler et al. 2004, 2007) &, Z DFEIKIZBIFEARAI L EE 255 (Dehaene et al. 2005), VWFA W ¥ 7213 2 OABHE CTIEEEORH DB BRI S T 3 WD S 3



LI BNDH 5, MHAMKMATIE, REZEFENEEINTOTY, FBRNAHIRICMOANES Y 74 o0 EL2ZITe kb, DD, VWFAX, =1
ETNT MEHE) LI Ehica=y b7V DEBE L ZDOMRENIEN TH 2 L EASL I LHTED, D=y MiE, BIRIEHEOMEZETH, o
KB o OB ZECOBETH 2, JOHEBTOLHIZ, MOASIES ) T 406D EEAR TP TV E V) A2 R 25HL S b5, HlZIE, &
KINTE H O BEDME (R85 A1 6 4 U % 52 (Buchel, Price, Frackowiak, & Friston, 1998; Cohen et al, 1997), F3& & D54 (Barton, Fox, Sekunova, & laria, 2010), HEH I
X % HGEBE O B4 (Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006; Cone, Burman, Bitan, Bolger, & Booth, 2008; Desroches et al. , 2010), 7z, HiEDOID LFD—
BB 2R, —EEEHEPEH L OV TRIEWICEET 2 2 LB 2ICA>TE D, @ficB 1 2 —BUIROTEI AR Z KL Tw 3
(Bolger, Hornickel, Cone, Burman, & Booth, 2008; Bolger, Minas, Burman, & Booth, 2008; Graves, Desai, Humphries, Seidenberg, & Binder, 2010), —ff€ 7L (Harm, McCandliss, &
Seidenberg, 2003) D Fill & —34§ % & 912, Bolger, Hornickel, et al. (2008) & Bolger, Minas, et al. (2008) 1%, VWFA OEFIHE-FHE—HMEADKIEDFfHEI B L TN %
EERRMLE, IhooMRE, ERAVPABLINTHIZoNT, HANLESHZINTOL L) RFERT250THSE, ZOILiE, ZMETILOR
HARICBWT, 320085254 TORBICZNZNHET 3 = 2 — v VRIOBITREERDS, FERICk-oTlifbEInz LBz ohTws,

FHAAEOMBEMEIIETY, MHARNETLOFUBIMY EFon Tz, FHERMOILMS 1 EIEE L BEL T2 DI L, Ykl T AT 5 B E (Binder,
Liebenthal, Possing, Medler, & Ward, 2004) & Rk 52 &0/ PN BT HEREIK & BYHE L Ty> % (Grinband, Hirsch, & Ferrera, 2006; Grinband et al., 2011), fHEME 7L TI, HHELHE
IZBH5-3 2 IgaEia (SRS O BB~ v & 2Vl £) DAL T ADORIRE R TR TR EFHI NS, —F, ABRENERREL URAET VTR, Ihs
DFEFNA T AR, BEPE R SOGERIC Y59 2 BdfE (P RrERRRiaRE 2 ) ICIRE SN B IE TR E PSS, MRIFZE (Myers & Blumstein, 2008;
Guediche, Salvata, & Blumstein, 2013 ) I L % &, WKL ERO BT 28554 7 A%,  EHEERIOEE ORI EBGE L 72, o, BEEMICET 2
PO LINE (Dierks et al., 1999) %, {HFI1E T 2 Ml& O FEEE %2 AUR T 2 BRI S IEMEAL T 915 (McGuire, Silbersweig, & Frith, 1996),

BREHANHEIC X D, GRS —EHERE, SRELEROMADOESY T 4IcBWLT, MRBEOREEMB TR, MRS X O E 2 IG5 oY B ¢4
U % &) BEAFHIE S, BlZIE, [EFERORL 2 BEEOGIRAMIC B 2 BHARIHIE,  fIEEHGH 260 ms FLEE R S 41 (Kramer & Donchin, 1987), %7z,
RN 2 BRI 81 2 EHiAIFIE,  250-350 ms FEBE T/ 41T % (Ashby & Martin, 2008; Carreiras, Ferrand, Grainger, & Perea, 2005), HESEIVEEHE I E #AE (Perre,
Midgley, & Ziegler, 2009; Perre & Ziegler, 2008) &k A 7 'V — 1L #H (Pattamadilok, Perre, Dufau, & Ziegler, 2008; Pattamadilok, Morais, De Vylder, Ventura, & Kolinsky, 2009) IZ %
2 —EURENE, R X 2 300350 ms IC ERP THRAEL, FEARICIA LBy 7ENEIEWRINTVS, Fi, XDEOERIHIELFFD MEG A X —Y v
TORER» S, HRMEICE T oA, ABRIEHIERRICRET 5 2 L2 5 922 % 5 T\ B (Wilson, Leuthold, Lewis, Georgopoulos, & Pardo, 2005), Z 4LIZBH
LT, vanLinden & (van Linden, Stekelenburg, Tuomainen, & Vroomen, 2007) i, aEHEMNZ SRS EES K BIHD S A<y F 247 4 73R %2FEHR T2 2 L2 WL,
RO T LR P IS 2 5 A Tw B Z ERRR L 7,

t F OFEBUHOFERTIE, =2 —8 Y LV OMRREIAN A REEZERT 5 2 LBREETH 508, HEBOA A=Y v YY) T 4 ARG DR EEDIIR T,
ZEMINE X ORI RS2 SO 5 Z EBIHREI N TV 5, MEG B X DK & #2219 MRI % A& 68 72 1% (Gow, Segawa, Ahlfors, & Lin, 2008) Tl&, FEFEALERIZEY
T 25 (R IED) oIS ¢, REERIS S ML T 5 2 E 2 S e o7, ERP 4 (Molinaro, Dunabeitia, Marin-Gutierrez, & Carreiras, 2010) Ti%, Hijk
WRDOB DT D & 5 BT (MAT3RIAL 74 &) i3, WD B (FEIER 180-220 ms) TIE LT X D YT D X HICMBEI N 203, DT B DBRE (FEAER 250-300 ms) T
I3, ZORY—UPHEEL, XFDL)HEFEHTFLD D XFDO L) ICUIEING Z L23b o7, ERP-MEG % fiff L 72#/f7E (Sohoglu, Peelle, Carlyon, & Davis, 2012)
T, B ZEE ORISR EL IS 2 P AR (e T ¥ A ) OfSENREHEIL, oA HAER WSS X D b TRIEEHE OIFEIC I s L xR
L7z, ZUE, TFHIBEFEIOEXLIRD S D by 789y « 74—y 225 LR O AT Z T L Twd 2 & LT 5,

BREE X OFEROBEEHEICB Y 255 L BRI AMEE, ¥4 3v 7, BIOMEICOLTE, AL LTS ES AR INTED, hsof

JERRYT 2 -0 DR L  fTh T, RIS RN RFREEE LTy, Fy 797 r2e8) 71 MogEz, HEGEELORMAD X912, RZH
T HRERE AL TRELRDY, ZNEBRODIZ, by 7¥ I vDEFE, FEAT7y 7oEEEHEIN, T7—EBE%2ERLT, PEHAHI=ALZ2EHT
BYHERLTRELDD, LI T ETHS (Friston, 2008; Mumford, 1992; Rao & Ballard, 1999), X 512, DX L, MERAE X WSS O S E) 0 [

& DRIDOMHAMERIZOWT HEEMDH 5 (R Dk & LT, Gotts, Chow, & Martin, 2012 £ X N Z DFFEIH),

BIEAHS Z OOFEICE VT, by 7YY v OEEBHBEINRE CEIET, €5 T 4 ISR L A ABSICEEE 5 2 Tw B IR R R X Icllbi s,
I D BB OB NS B2 S L B IS D, 46 OB I D EEEFIE LRI B W CHAICTEE L S 15 L v ) O A EAVEF L% % (Ghuman, Bar,
Dobbins, & Schnyer, 2008; Gotts et al., 2012), ¥z, SIEUBFKTIE, 74— 2y 7 RBEH - EOMAEHAAEABRICERYER 5.2 5 2 LB REAMICiEH S n
TEh, HMAENETLVE-HLTWVS,

8. ¥ & LSRBRD I

AGRSLTIE, I LR B T 2 HAENAL E AR AROLEZHIIL TE L, 1A ETAPRMICID HAZZNRERTH S, RELFEL SEoTMIcTICELRZ
WCTERD, HAWNT 70 —F DDIGHEN OB THMRE LT E X, FHEHL NV OER EMRERIAN LG, 2 L TTEIHEIC L > T s i I nmiEic ki
% RDOBEEN BT 2 G2 WA L 7,

o, MAEEEL, MERDERL T2 BEAGE EOBEE @R L, WICE T 28155 3 i IERE ICBE T 2 7B AL MR O FHILE & Trii)A VEEL E —
B ERTRL, 2L LT, A5G LOMBIT L TE - SR AGEROMT A3, IARSHE L Tw2a L) IcRA 5,

At & FEEICEED K FERE, MHANEHEZMR LT3 L) KR A 225, WAEHLOEAD T, SROVEZLEE T 20 D0 OEELEIH 2,

8.1 HERMNTRIUD T 6 M EIGEH LT NICB I 2HEDY L F I 7 R
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