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Abstract Speech production is studied from both psycholin-
guistic and motor-control perspectives, with little interaction
between the approaches. We assessed the explanatory value
of integrating psycholinguistic and motor-control concepts for
theories of speech production. By augmenting a popular psy-
cholinguistic model of lexical retrieval with a motor-control-
inspired architecture, we created a new computational model to
explain speech errors in the context of aphasia. Comparing the
model fits to picture-naming data from 255 aphasic patients, we
found that our new model improves fits for a theoretically pre-
dictable subtype of aphasia: conduction. We discovered that the
improved fits for this group were a result of strong auditory—
lexical feedback activation, combined with weaker auditory—
motor feedforward activation, leading to increased competition
from phonologically related neighbors during lexical selection.
We discuss the implications of our findings with respect to
other extant models of lexical retrieval.

Keywords Speech production - Computational models -
Neuropsychology

Speech production has been studied from several theoretical
perspectives, including psycholinguistic, motor control, and
neuroscience, often with little interaction between the ap-
proaches. Recent work, however, has suggested that integration
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may be productive, particularly with respect to applying com-
putational principles from motor control, such as the combined
use of forward and inverse models, to higher-level linguistic
processes (Hickok, 2012, 2014a, 2014b). Here we explore this
possibility in more detail by modifying Foygel and Dell’s
(2000) highly successful psycholinguistic, computational mod-
el of speech production, using a motor-control-inspired archi-
tecture, and assess whether the new model provides a better fit
to data and in a theoretically interpretable way.

We first present the theoretical foundations for this work by
(1) describing the motivations behind Foygel and Dell’s
(2000) semantic—phonological model (SP), (2) briefly sum-
marizing the motor-control approach, (3) highlighting some
principles from our recent conceptual attempt to integrate the
approaches, and (4) describing our modification of SP using a
fundamental principle from motor-control theory to create our
new semantic—lexical-auditory—motor model (SLAM). We
then present the computational details of both the SP and
SLAM models, along with simulations comparing SP with
SLAM. To preview the outcome of these simulations, we
found that SLAM outperforms SP, particularly with respect
to a theoretically predictable subcategory of aphasic patients.
We conclude with a discussion of how the new model relates
to some other extant models of word production.

The SP model

SP has its roots in Dell’s (1986) theory of retrieval in sentence
production, which was developed to account for the speech
errors, or slips of the tongue, found in large collections of
natural speech. To this end, the theory integrated psychologi-
cal and linguistic concepts: From psychology it adopted the
notion of computational simultaneity, in which multiple inter-
nal representations compete for selection prior to production,
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and from linguistics it incorporated hierarchical levels of rep-
resentation, as well as the separation at each level between
stored lexical knowledge and the applied generative rules.

Dell, Schwartz, Martin, Saffran, and Gagnon (1997) pro-
posed a computational model that limited the focus to single-
word production, but extended the theoretical scope to include
explanations of speech errors in the context of aphasia. The
basic idea was that the pattern of aphasic speech errors reflects
the output of a damaged speech production system, which
could be modeled by adjusting parameters in the normal mod-
el to fit aphasia data. The model’s architecture consisted of a
three-layer network with semantic, lexical, and phonological
units, and the connections among the units were selected by
the experimenters to approximate the structure of a typical
lexical neighborhood (Fig. 1). Word production was modeled
as a spreading-activation process, with noise and decay of
activation over time. Damage was implemented by altering
the parameters that control the flow of activation between
representational levels. Simulations were then used to identify
parameter values that generated frequencies of error types that
were similar to those made by aphasic patients.

Due to the computationally intensive nature of the simula-
tion method, however, comprehensive explorations were ef-
fectively limited to only two parameters at a time. Neverthe-
less, in a series of articles beginning with Foygel and Dell
(2000), two free parameters in the model were identified that
account for an impressive variety of the data derived from a
picture-naming task, including clinical diagnostic information
(Abel, Huber, & Dell, 2009), lexical frequency effects (Kit-
tredge, Dell, Verkuilen, & Schwartz, 2008), characteristic er-
ror patterns associated with different types of aphasia
(Schwartz, Dell, Martin, Gahl, & Sobel, 2006), characteristic
patterns of recovery (Schwartz & Brecher, 2000), and interac-
tive error effects (Foygel & Dell, 2000). These two free pa-
rameters were the connection strengths between semantic and
lexical representations (the s-weight) and between lexical and
phonological representations (the p-weight), an architecture
known as SP. SP has been used to explain performance on

Fig. 1 The semantic—
phonological (SP) model
architecture
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other tasks, as well, such as word repetition (Dell, Martin, &
Schwartz, 2007), and to predict the location of neurological
damage seen in clinical imaging (Dell, Schwartz, Nozari,
Faseyitan, & Branch Coslett, 2013), although here we will
focus primarily on its relevance to picture-naming errors.

SP pertains specifically to computations that occur between
the semantic and phonological levels. It is assumed that the out-
put of the model is a sequence of abstract phonemes that must
then be converted into motor plans for controlling the vocal tract.
We next turn to some fundamental constructs that have come out
of research on how motor effectors are, in fact, controlled.

Motor-control theory

At the broadest level, motor control requires sensory input to
motor systems for initial planning and feedback control. It
requires input for planning to define the targets of motor acts
(e.g., a cup of a particular size and orientation and in a partic-
ular location relative to the body) and to provide information
regarding the current state of the effectors (e.g., the position
and velocity of the hand relative to the cup). Without sensory
information, action is impossible, as natural (Cole &
Sedgwick, 1992; Sanes, Mauritz, Evarts, Dalakas, & Chu,
1984) and experimental (Bossom, 1974) examples of sensory
deafferentation have demonstrated. Sensory information has
also been shown to provide critical feedback information dur-
ing movement (Wolpert, 1997; Wolpert, Ghahramani, & Jor-
dan, 1995), which provides a mechanism for error detection
and correction (Kawato, 1999; Shadmehr, Smith, & Krakauer,
2010). When precise movements are performed rapidly, how-
ever, as in speech production, feedback mechanisms may be
unreliable, due to feedback delay or a noisy environment. In
this case, a state feedback control system can be supplemented
with forward and inverse models (Jacobs, 1993), enabling the
use of previously learned associations between motor com-
mands and sensory consequences to guide the effectors to-
ward sensory goals. This arrangement implies that the motor
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and sensory systems are tightly connected, even prior to on-
line production or perception.

In the case of speech, the most critical sensory targets are
auditory (Guenther, Hampson, & Johnson, 1998; Perkell,
2012), although somatosensory information also plays an im-
portant role (Tremblay, Shiller, & Ostry, 2003). Altered audi-
tory feedback has been shown to dramatically affect speech
production (Houde & Jordan, 1998; Larson, Burnett, Bauer,
Kiran, & Hain, 2001; Yates, 1963), and changes in a talker’s
speech environment can lead to “gestural drift”—that is,
changes in his or her articulatory patterns (i.e., accent; Sancier
& Fowler, 1997). Additionally, neuroimaging experiments in-
vestigating covert speech production have consistently report-
ed increased activation in auditory-related cortices in the tem-
poral lobe (Callan et al., 2006; Hickok & Buchsbaum, 2003;
Okada & Hickok, 20006).

Some particularly relevant evidence for the role of the au-
ditory system in speech production has come from neuropsy-
chological investigations of language. Striking patterns of im-
paired and intact language-processing abilities resulting from
neurological injury have led theorists to propose separate au-
ditory and motor speech representations in the brain
(Caramazza, 1991; Jacquemot, Dupoux, & Bachoud-Lévi,
2007; Pulvermiiller, 1996; Wernicke, 1874/1969). Patients
with conduction aphasia (Goodglass, 1992), for example,
have fluent speech production, suggesting preserved motor
representations. These patients also have good auditory com-
prehension and can recognize their own errors, suggesting
spared auditory representations. Despite these abilities, they
make many phonemic errors in production and have trouble
with nonword repetition. This pattern is typically explained as
resulting from damage to the interface between the separate
auditory and motor systems (Anderson et al., 1999;
Geschwind, 1965; Hickok, 2012; Hickok et al., 2000). This
point regarding conduction aphasia has important theoretical
implications, as we discuss below.

Conceptual integration

The hierarchical state feedback control (HSFC; Hickok, 2012)
model provides a theoretical framework for the integration of
psycholinguistic notions with concepts from biological motor-
control theory. This conceptual framework is organized around
three central principles. The first is that speech representations
have complementary encodings in sensory and motor cortices
that are activated in parallel during speech production, all the
way up to the level of (at least) syllables. The second principle
is that a particular pattern of excitatory and inhibitory connec-
tions between the sensory and motor cortices, mediated by a
sensorimotor translation area, implements a type of forward/
inverse model that can robustly guide motor representations
toward sensory targets, despite the potential for errors in motor

program selection during early stages of motor planning/acti-
vation. The third principle is that the sensorimotor networks
supporting speech production are hierarchically organized, with
somatosensory cortex processing smaller units on the order of
phonemes (or more accurately, phonetic-level targets such as
bilabial closure, which can be coded as somatosensory states),
and auditory cortex processing larger units on the order of
syllables (i.e., acoustic targets). A schematic of the HSFC
framework is presented in Fig. 2; it is clear that the top portion
(darker colors) embodies the two steps of SP but breaks down
the phonological component into two subcomponents, an audi-
tory—phonological network and a motor—phonological net-
work. This conceptual overlap has inspired our creation of a
new computational model that is directly related to the first
principle and is partially related to the other two principles.
We reasoned that the architectural assumptions of the HSFC
model can be evaluated, in part, by integrating them with an
established and successful computational model of naming, SP;
if the architectural changes led to improved modeling perfor-
mance, this would provide support for the new framework.

The SLAM model

SLAM is a computational model of lexical retrieval that di-
vides phonological representations into auditory and motor
components (Fig. 3). The dual representation of phonemes
directly follows from the first HSFC principle. The choice to
label the sensory units as auditory representations is motivated
by the third principle—specifically, that this level of coding is
larger than the phonetic feature. Neither SP nor SLAM in-
cludes inhibitory connections, and thus the second HSFC
principle is not directly implemented; however, the pattern
of connections in the SLAM model does implement a type
of forward/inverse model that can reinforce potentially noisy
motor commands. Our goal here was to modify the computa-
tional assumptions of SP as little as possible in order to assess
the effects of the architectural assumption of separate motor
and sensory phonological representations.

During picture-naming simulations, activation primarily
flows from semantic to lexical to auditory to motor units—
hence the model’s acronym, SLAM. There is also a weaker,
direct connection between lexical and motor units. The exis-
tence of this lexical-motor connection acknowledges that
speech production may occur via direct information flow from
lexical to motor units, an assumption dating back to Wernicke
(1874/1969), which is needed to explain preserved fluency
and spurts of error-free speech in conduction aphasia. How-
ever, the connection is always weaker than the lexical-audi-
tory route (again, Wernicke’s original idea), motivated by sev-
eral points. First, the auditory—lexical route is presumed to
develop earlier and to be used more frequently than the lexi-
cal-motor route. Longitudinal studies have shown that
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Fig. 2 A schematic diagram of the hierarchical state feedback control (HSFC) framework (Hickok, 2012)

children begin to comprehend single words several months
before they produce them, and they acquire newly
comprehended words at nearly twice the rate of newly pro-
duced words (Benedict, 1979). Second, motor-control theory
dictates that motor plans are driven by their sensory targets.
During development, the learner must make reference to au-
ditory targets, in order to learn the mapping between speech
sounds and the motor gestures that reproduce those sounds
(Hickok, 2012; Hickok, Houde, & Rong, 2011). Third, in
the context of aphasia, comprehension deficits tend to recover
more than production deficits (Lomas & Kertesz, 1978), sug-
gesting a stronger association between lexical and auditory—
phonological representations.

The assumption that the lexical-auditory mapping is al-
ways stronger than the lexical-motor mapping has an
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important consequence: It means that the SLAM model is
not merely the SP model with an extra part; in fact, there is
effectively zero overlap in the parameter spaces covered by SP
and SLAM. The reason for this is as follows. Given the SLAM
architecture shown in Fig. 3, it is clear that one could imple-
ment SP simply by setting the connection weights in the lex-
ical-auditory and auditory—motor mappings to zero and let-
ting the lexical-motor weights vary freely. This would make
SP a proper subset of SLAM, allowing SLAM to cover a
parameter space (and therefore fits to data) identical to that
of SP. However, this architectural possibility was explicitly
excluded by implementing our assumption that lexical-audi-
tory weights are always stronger than lexical-motor weights:
If the lexical-auditory weights are zero, then the lexical-mo-
tor weights must also be zero and cannot vary freely—thus
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Fig. 3 The semantic—lexical-auditory—motor (SLAM) model architecture
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effectively excluding the parameter subspace used by SP. This
further allows us to test SLAM’s assumption that the lexical—
auditory route is the primary one used in naming. We can also
examine model performance with the opposite constraint—
namely, when the lexical-auditory weights are always less
than the lexical-motor weights—a variant we might call
“SLMA” to reflect the lexical-motor dominance and that
would include SP parameter space as a subset. SLAM and
SLMA have the same numbers of free parameters, both of
which are more than that of SP, but with different assumptions
regarding the connection strength patterns. If SLAM were to
do better than SLMA, even though SLMA implements SP as a
proper subset of its parameter space, it would demonstrate that
the primacy of the lexical-auditory route is not only theoret-
ically motivated, but also necessary for the observed
improvements.

To summarize, we hypothesized that SLAM would charac-
terize deficits in the general aphasia population at least as well
as SP, and would primarily benefit the modeling of conduction
aphasia. Recall that conduction aphasia is best explained as a
dysfunction at the interface between auditory and motor
speech representations that affects the phonological level, in
particular (Hickok, 2012; Hickok et al., 2011). Thus, a naming
model that incorporates a mapping between auditory—phono-
logical and motor—phonological representations should pro-
vide a better fit for speech errors resulting from dysfunction
in this mapping. To test this hypothesis, we compared the SP
and SLAM model fits to a large set of aphasic picture-naming
data.

Computational implementation
Patient data

All data were collected from the Moss Aphasia Psycho-
linguistic Project Database (Mirman et al., 2010; www.
mappd.org). The database contains deidentified data
from a large, representative group of aphasic patients,
including responses on the Philadelphia Naming Test
(PNT; Roach, Schwartz, Martin, Grewal, & Brecher,
1996), a set of 175 line drawings of common nouns. All
patients in the database had postacute aphasia subsequent
to a left-hemisphere stroke, without any other diagnosed
neurological comorbidities, and they were able to name at
least one PNT item correctly. We analyzed the first PNT
administration for all patients in the database with the
demographic information available, including aphasia
type and months postonset (N=255). The cohort consisted
of 103 anomic, 60 Broca’s, 46 conduction, 35 Wernicke’s,
and 11 other aphasics with transcortical sensory,
transcortical motor, postcerebral artery, or global

etiologies. The median months poststroke was 28 [1,
381], and the median PNT percent correct was 76.4 [1,
99].

Computational models

As we mentioned above, SP was first presented by Foygel

and Dell (2000). The model’s approach to simulating pic-

ture naming instantiates an interactive, two-step,

reading-activation th f lexical retrieval an n-
ists of a three-layer network, with individual unit
representing semantic, lexical, and phonological symbol
(Fig. 1). The number of units and the pattern of connec-
tions are intended to approximate the statistical probabil-
ities of speech error types in English, by implementing the
structure of a very small lexical neighborhood consisting
of only six words, one of which is the target. The model
includes six lexical units, with each connected to ten se-
mantic units representing semantic features. Semantically
related words share three semantic units, meaning that on
a typical trial, with only one word that is semantically
related to the target, the network has a total of 57 seman-
tic units. Each lexical unit is also connected to three pho-
nological units, corresponding to an onset, vowel, and
coda. There are ten phonological units total: six onsets,
two vowels, and two codas. Words that are phonologically
related to the target differ only by their onset unit, and the
network always consists of two such words. Finally, the
remaining two words in the network are unrelated to the
target, with no shared semantic or phonological units. On
20 % of the trials, one phonologically related word is also
semantically related, creating a neighbor that has a
“mixed” relation to the target.

Simulations of picture naming begin with a boost of
activation delivered to the semantic units. Two parame-
ters, S and P, specify the bidirectional weights of lexi-
cal-semantic and lexical-phonological connections, re-
spectively. Activation spreads simultaneously between
all layers, in both directions, for eight time steps accord-
ing to a linear activation rule with noise and decay. Then,
a second boost of activation is delivered to the most active
lexical unit, and activation continues to spread for a fur-
ther eight time steps. Finally, the most active phonological
onset, vowel, and coda units are selected as output to be
compared with the target. Production errors occur due to
the influence of noise as activation levels decay, which
can be mitigated by strong connections. Responses are
classified as correct, semantic, formal, mixed, unrelated,
or neologism. For a given parameter setting, a multinomi-
al distribution over these six response types is estimated
by generating many naming attempts with the model.
These distributions may then be compared with those that
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result from the naming responses produced by aphasic
patients.

SLAM retains many of the details of SP, consistent with
our aim to primarily assess the effects of the architectural
modification. The semantic and lexical units remain un-
changed, but there is an additional copy of the phonological
units, with one group designated as auditory and the other as
motor (Fig. 3). Four parameters specify the bidirectional
weights of semantic—lexical (SL), lexical-auditory (LA), lex-
ical-motor (LM), and auditory—motor (AM) connections. The
LA and LM connections are identical to the P connections in
the SP model, with each lexical unit connecting to three audi-
tory and three motor units, whereas the AM connections are
simply one-to-one. Simulations of picture naming are carried
out in the same two-step fashion as with SP, with boosts de-
livered to the semantic and then the lexical units, and phono-
logical selection occurring within motor units.

Fitting data

In order to fit data, the model is evaluated with different
sets of parameters that yield sufficiently different output
distributions, creating a finite-element map from parame-
ter space to data space, and vice versa. This process in-
volves, first, selecting a set of parameter values (e.g., S
and P weights), then generating many naming attempts
with the model using that parameter set, in order to esti-
mate the frequency of each of the six types of responses
that occur with that particular model setup. Once those
frequencies have been determined, that weight configura-
tion becomes associated with the output distribution in a
paired list called a map. Each point in the map represents
a prediction about the type of error patterns that are pos-
sible when observing aphasic picture naming. One way to
evaluate a model, then, is to measure how close its pre-
dictions come to observed aphasic error patterns. The dis-
tance between an observed distribution and the model’s
nearest simulated distribution is referred to as the model’s
fit for that data point. The root mean squared deviation
(RMSD) is an arbitrary but commonly used measure of
fit, which can be interpreted as the average deviation for
each response type. For example, an RMSD of .02 indi-
cates that the observed proportions deviate from the pre-
dicted proportions by .02, on average (e.g., predict-
ed=[.50, .50]; observed=[.48, .52]). Thus, a lower RMSD
value indicates a better model fit. Immediately, the ques-
tion arises of how many points one should generate, and
how to select the parameters to avoid generating redun-
dant predictions.

In their Appendix, Foygel and Dell (2000) provided
guiding principles for generating a variable-resolution
map of parameter space, along with an example algo-
rithm. They noted that the particular choice of mapping
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algorithm likely would have little impact on the fit results,
as long as it yielded a comprehensive search; however,
given the inherently high computational cost of mapping,
a particular algorithm may affect the map’s maximum res-
olution in practice. A second algorithm for parameter
space mapping was given by Dell, Lawler, Harris, and
Gordon (2004), and these maps are considered to be the
standard for SP, since they are available online and have
been used in subsequent publications. This SP map has 3,
782 points with 10,000 samples at each point and required
several days of serial computation to generate. Clearly, the
computational cost associated with the mapping procedure
represents a considerable bottleneck for developing and
testing models. Adding new points to the map improves
the chances of a prediction lying closer to an observation,
with diminishing returns as the model’s set of novel pre-
dictions winnows. As Dell has suggested, because the
goal is to find the best fit, adding more points to improve
model performance is probably a worthy pursuit (G. Dell,
personal communication, July 12, 2013). Moreover, be-
cause SLAM has two additional parameters, we needed
to modify the mapping procedure to generate maps more
efficiently.

We greatly improved efficiency by redesigning the
mapping algorithm to take advantage of its inherent par-
allelism. There are two main iterative steps in the map-
ping algorithm: point selection and point evaluation. The
coordinates of a point in parameter space are defined by a
possible parameter setting for the model (point selection),
and a corresponding point in data space is defined by the
proportions of response types generated with that param-
eter setting (point evaluation). The point evaluation step is
extremely amenable to parallelization, because the simu-
lations involve computations across independent units, in-
dependent samples, and independent parameter sets. Point
selection, however, required a new approach to foster par-
allelism: Delaunay mesh refinement.

The Delaunay triangulation is a graph connecting a set of
points, such that the circumcircle of any simplex does not
include any other points in the set. This graph has many fa-
vorable geometric properties, including the fact that edges
provide adjacency relationships among the points. The new
point selection algorithm takes advantage of these adjacency
relationships. Beginning with the points lying at the parameter
search range boundaries and their centroid, if the separation
between any two adjacent points in parameter space exceeds a
threshold distance (RMSD) in data space, their parameter
space midpoint is selected for evaluation and is added to the
map. These new points are then added to the Delaunay mesh,
and the process reiterates until all edges are under threshold.
Thus, on each iteration, the point selection algorithm yields
multiple points to be evaluated in parallel across the entire
parameter search range. Parallel processing was executed on
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a graphics processing unit (GPU) to further improve
efficiency.’

Before statistically comparing SP’s and SLAM’s perfor-
mances, we studied the effects of map resolution on the model
fits. First, we generated a very high-resolution map for each
model using a low RMSD threshold of .01 to encourage con-
tinued exploration of the parameter space. Each map included
10,000 samples at each point, and the parameters varied inde-
pendently in the range [.0001, .04]. The maximum parameter
values were selected to be near the lowest values that yielded
the highest frequency of correct responses, so that reduced
values would lead to more errors. Due to the use of a low
mapping threshold, the algorithm was halted before comple-
tion, after generating an arbitrarily large number of points.
Early termination is not a great concern, because the algorithm
efficiently selects points over the full search range. This fact
also makes it a trivial matter to reduce the map resolution
while still covering the full space.

The mapping procedure generated an initial 31,593 points
for the SLAM model, with parameters freely varying; then, in
accordance with the SLAM architecture, all points with LM >
LA were removed, yielding a SLAM map with 17,786 points.
The full SP map had 57,011 points. Next, we created 50
lower-resolution maps for each model by selecting subsets
from the larger maps, with logarithmically spaced numbers
of points from 5 to 17,000. For each map, we calculated the
mean fit for the aphasic patients as a whole and for each of the
diagnosis groups, excluding the heterogeneous diagnosis
group. Figure 4 plots the fit curves. As we expected for both
models, adding points improved the fits with diminishing
returns. The relative fit patterns appeared to stabilize around
2,321 points, marked by vertical lines in the figure. We there-
fore chose to compare SP and SLAM at this map resolution;
our findings should apply to any higher-resolution map com-
parisons, with trends favoring SLAM as resolution increases.

To compare the new parallel-generated maps with the stan-
dard serially generated maps, we also identified a parallel SP
map resolution that yielded similar performance in terms of
mean and maximum fit to the values reported in Schwartz
etal. (20006). For this set of 94 patients, a parallel SP map with
189 points resulted in a mean and a maximum RMSD of.0238
and .0785, as compared with the reported values of .024 and
.084, respectively. As expected, the parallel algorithm selected
points much more efficiently than the serial algorithm,

! At the time of writing the manuscript, the authors were unaware of any freely
available parallel algorithm to incrementally construct the Delaunay triangu-
lation in arbitrary dimensions. We therefore implemented point evaluation and
edge bisection using CUDA C and the Thrust library, executing these steps on
a GPU, while the Delaunay triangulation was constructed on the computer’s
central processing unit (CPU) using the CGAL library. Performance tests
comparing the parallel point evaluation step to a serial C++ implementation,
running on an Nvidia Tesla K20Xm GPU and an Intel 1,200-MHz 64-bit CPU,
respectively, demonstrated a speedup by a factor of 26.0.

requiring many fewer predictions to achieve similar perfor-
mance. We used this lower map resolution as a baseline, to
compare the effects of adding points to the standard SP map
with the effects of augmenting SP’s structure. Because our
fitting routine yielded better fits than the standard SP maps
that have been available to researchers online (Dell et al.,
2004), we have provided our fitting routine, with adjustable
map resolutions, along with our new model, at the following
Web address: http://cogsci.uci.edu/~alns/webfit.html

Results

First, we examined our hypothesis that SLAM would fit the
data at least as well as SP for the general aphasia population.
All analyses were performed using the MATLAB software
package. As we mentioned above, we chose to use RMSD
as our measure of fit (where a lower value means a better
fit). Table 1 provides descriptive statistics of the model fits
for the entire sample of patients, as well as for the five sub-
types of aphasia. Figure 5 shows a scatterplot comparing the
SP and SLAM fits. The solid diagonal line represents the
hypothesis that the models are equivalent, and the dotted lines
indicate one standard deviation of fit difference in the sample.
It is clear that both models do quite well overall, with the
majority of patients clustering below .02 RMSD. Although
the models tend to produce similar fits in general, it is also
clear that a subgroup of patients falls well outside the 1-SD
boundaries. The inset in Fig. 5 shows a bar graph comparing
the numbers of patients who were better fit (>1 SD) by SP or
SLAM, demonstrating that SLAM provides better fits for a
subgroup of patients without sacrificing fits in the general
population.

Next, we examined our hypothesis that SLAM would im-
prove the model fits specifically for conduction aphasia. Fig-
ure 6 displays the RMSD differences between the models for
individual patients, grouped by aphasia type; positive differ-
ence values indicate improved fits for SLAM over SP. It is
clear that the SLAM model provides the largest and most
consistent fit improvements for the conduction group, and a
majority of the fits for Wernicke’s patients also benefit from
the new model. The fact that Wernicke’s aphasia was also
better fit by SLAM is consistent with the HSFC theory.
Wemicke’s aphasia is associated with neuroanatomical dam-
age very similar to that of conduction aphasia, and acute
Wernicke’s aphasia often recovers to be more like a conduc-
tion profile, suggesting a partially shared locus of impairment.
For a statistical comparison of the fit improvements between
the five aphasia subtypes, we performed a one-way analysis of
variance (ANOVA) on the RMSD changes, which indicated at
least one significant difference between the group means (p <
.001). A follow-up multiple comparison test indicated that the
conduction group benefited more from SLAM than any other
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group, since the 95 % confidence interval for the mean fit
improvement did not overlap with that of any other group,
including Wernicke’s.

To further validate these results, we tested whether fit
improvements due to increasing the SP map resolution
specifically favored any of the diagnosis groups. Unlike
our theoretically motivated structural changes, this method
of improving model fits was not expected to favor any
particular group. We compared the model fits for an SP
map with 189 points, which on average is equivalent to
the standard SP map in the literature, to the higher-
resolution SP map with 2,321 points. For the group of
255 patients, increasing the number of SP map points sig-
nificantly improved the average fit from .0230 RMSD to
.0206 RMSD (p < .001). The improvement in fit was sig-
nificant for all diagnosis groups (all ps <.001); however, a
one-way ANOVA with follow-up multiple comparison
tests showed that no group had significantly greater im-
provement than every other group (no disjoint confidence
intervals), unlike the result produced by our structural
changes, which specifically favored the conduction group.
Instead, the Wernicke’s group improved most, whereas the
anomic group improved least, consistent with the observa-
tion that these groups are already the worst and best fits for
SP, respectively. The implication is that the improvements
in fit caused by our theoretically motivated manipulation
of the SP model’s architecture are qualitatively different
from the improvements gained by other methods.

We also hypothesized that the conduction naming pat-
tern should be fit by a particular SLAM configuration:
strong LA and weak AM weights. For the patients who
exhibited the greatest improvements in fit, this was indeed
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the case. Figure 7 uses boxplots to display the SLAM
weight configurations for the 20 patients (13 conduction,
five Wernicke’s, one anomic, one Broca’s) who exhibited
the greatest fit improvements (>2 SDs). Figure 8 shows
data from an example patient with conduction aphasia,
along with the corresponding SP and SLAM model fits.
The best-fitting weights in the SP model were .022 and
.017, for S and P, respectively. The SLAM model for this
patient yielded .023 and .013 for SL and LM, respective-
ly, whereas the LA weight was maximized at .04, and the
AM weight was minimized at .0001. For this patient,
SLAM reduced the SP fit error by .0135 RMSD. This
example also illustrates that SLAM’s largest fit improve-
ments over SP are accompanied by a consistent increase
in the predicted frequency of formal errors, along with a
consistent decrease in semantic (and in unrelated) errors.
This trade-off in formal errors for semantic errors is most
likely to occur at the first, lexical-selection step. The dual
nature of formal errors, that they can occur during either
lexical or phonological selection, is one of the hallmarks
of the SP model. Foygel and Dell (2000) showed that
formal errors during lexical selection increase when pho-
nological feedback to lexical units outweighs the semantic
feedforward activation. In conduction aphasia, large LA
weights provide strong phonological feedback to lexical
units, whereas small AM and LM weights provide weak
phonological feedforward to the motor units. With LM
greater than AM, more activation flows from the incor-
rect, phonologically related lexical items, thereby increas-
ing formal errors at the expense of semantic errors. The
implication, that strong auditory—phonological feedback
influences lexical selection in conduction aphasia,
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Table 1  Descriptive statistics for SLAM and SP model fits
SP SLAM
S P RMSD RMSD SL LM LA AM
All Mean  .0241 0232 0194 0187 10242 0152 .0300 0254
N =255 St. Dev. .0118 0075 0189 0189 0121 10059 .0085 0135
Median .0256 0224 0127 0111 0250 0151 .0300 10300

IQR  [.0170,.0341] [.0179,.0281] [.0071,.0264] [.0067,.0246] [.0176,.0347] [.0113,.0200] [.0225,.0388] [.0151,.0388]

Range  [.0001,.0400] [.0062,.0400] [.0010,.1273] [.0019,.1977] [.0001,.0400] [.0026,.0300] [.0010,.0400] [.0001,.0400]
Anomic  Mean  .0299 0274 0110 0115 0299 0181 0308 0296
N=103 gt Dev. .0081 0070 .0095 0095 0085 0054 .0080 0113
Median 0296 0266 .0082 0085 .0300 0176 0325 0350
IQR  [.0241,.0376] [.0219,.0318] [.0049,.0137] [.0056,.0141] [.0250,.0400] [.0151,.0200] [.0250,.0400] [.0204,.0400]
Range  [.0054,.0400] [.0106,.0400] [.0010,.0654] [.0019,.0685] [.0063,.0400] [.0038,.0300] [.0101,.0400] [.0001,.0400]
Broca’s  Mean .0215 0218 0238 0240 0217 0143 0267 0266
N=160 St. Dev. .0125 0071 0243 0250 0128 .0053 .0088 0144
Median 0205 0202 0145 0149 .0200 0126 0250 0325

IQR [.0139,.0334] [.0174,.0262] [.0076,.0312] [.0075,.0300] [.0144,.0313] [.0101,.0176] [.0200,.0350] [.0188,.0400]

Range
Conduction Mean  .0245 0182 .0203
N=46 St. Dev. .0110 0053 0153
Median .0259 0177 .0175

.0137
.0110

[.0001,.0400] [.0075,.0400] [.0012,.1273] [.0019,.1292] [.0001,.0400] [.0026,.0275] [.0101,.0400] [.0001,.0400]

0157 .0250 .0120 .0323 .0163
.0110 .0048 .0089 0134
.0275 .0126 .0375 .0144

IQR  [.0020,.0331] [.0145,.0219] [.0078,.0282] [.0063,.0217] [.0188,.0338] [.0088,.0138] [.0250,.0400] [.0038,.0238]

.0225

[.0001, .0400] [.0062,.0300] [.0019,.0720] [.0028,.0727] [.0001,.0400] [.0038,.0275] [.0101,.0400] [.0001,.0400]

.0318 .0123 0115 .0305 .0233
.0096 .0051 .0080 .0130
.0275 .0126 .0101 .0325 .0250

IQR  [.0039,.0187] [.0152,.0248] [.0155,.0448] [.0139,.0472] [.0032,.0185] [.0076,.0151] [.0232,.0388] [.0123,.0350]

Range
Wernicke’s Mean 0126 .0195 10332
N=35 St. Dev. .0095 .0059 10209
Median .0133 0193 .0294
Range
Other Mean  .0180 0255 0275
N=11 St. Dev. .0148 .0073 0222
Median .0173 0257 0143

.0221

[.0002, .0400] [.0070,.0327] [.0042,.0979] [.0038,.0989] [.0001,.0400] [.0038,.0225] [.0163,.0400] [.0001,.0400]

.0283 .0178 0173 .0293 .0246
.0148 .0057 .0080 0123
0125 .0176 0176 0275 .0275

IQR  [.0019,.0265] [.0220,.0301] [.0087,.0488] [.0106,.0488] [.0023,.0250] [.0151,.0200] [.0250,.0372] [.0200,.0319]

Range

[.0003, .0400] [.0133,.0400] [.0049,.0617] [.0057,.0628] [.0001,.0400] [.0076,.0288] [.0151,.0400] [.0001,.0400]

represents a novel prediction of our model that is support-
ed by the data.

Finally, we tested the criticality of our assumption that LA
weights must be greater than LM weights. We repeated our
original analysis, this time comparing SP to SLMA, an alter-
native version of SLAM that has lexical-motor dominance
instead of lexical-auditory dominance. SLMA was fit with a
four-parameter map with 2,321 points, the same size as the
SLAM map, culled from the 13,807 discarded SLAM points,
ensuring that LM weights were always greater than or equal to
the LA weights. Figure 9 is a scatterplot comparing the SP and
SLMA model fits; the diagonal lines are the same as those in
Fig. 5. When this alternative model architecture was used,
there were no noticeable improvements over SP; the maxi-
mum change in fit was only .0038 RMSD. Thus, the mere
presence of additional parameters in SLAM was not what

caused the observed fit improvements; their theoretically mo-
tivated arrangement was necessary, as well.

We also explored the necessity of the LM weights, testing
the importance of our two routes. We fixed the LM weights at
.0001 (effectively zero) by using 323 points from the full
SLAM map to fit the data, thus yielding a three-parameter
model, and we compared these fits with the fits from an SP
map that had the same number of points. This three-parameter
model that lacked direct LM connections did much worse than
the two-parameter SP model, yielding an average fit of .10
RMSD. This catastrophic failure was due to the fact that not
enough activation reached the motor units via the lexical-au-
ditory—motor route. Recall that activation is multiplied by a
fraction at each level, yielding lower activation after two steps
through the lexical-auditory—motor route than after the one-
step lexical-motor route. Without the combined inputs to
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difference in the sample. The majority of patients are fit well by both models, and a subgroup of patients are fit notably better by SLAM (inset)

motor units from the two routes, the model could only produce
a maximum estimate of 65 % correct responses. Although
HSFC theory does predict that direct lexical-motor connec-
tions are required for normal levels of correctness, the weaker
input to motor units from the auditory—motor route raises the
concern that our initial choice of SLAM parameter constraints
gave more prominence to the lexical-motor route than the
HSFC theory warrants. We therefore explored the SLAM pa-
rameter space further, and we discovered alternative parameter
constraints that yielded qualitatively similar results: In the
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Fig. 6 Individual fit changes between the SP and SLAM models.
Positive values indicate better SLAM fits
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“healthy model,” the SL and LA weights have the usual max-
imum value of .04, whereas the LM weights have a maximum
of.02, and AM weights have a maximum of .5; in aphasia, the
parameters are free to vary below those values. This parameter
arrangement ensures that the primary source of phonological
feedback to the lexical layer is usually from auditory units,
enables the auditory—motor route to provide strong activation
to motor units during naming, and removes the previous con-
straint that in damaged states, the LM weights must always be
lower than the LA weights. As with the original choice of

o
(=]
=
T
1

o
=1
i

=

(=1

o
T

o
n

002+ — 5

Connection strength

005t —— e

001 +

ooos| — .

0

sL LM LA AM
Fig.7 Boxplots showing the SLAM weights for the group of 20 patients
with the greatest fit improvements. As expected, a model profile with
high lexical-auditory and low auditory—motor weights leads to the
greatest improvements over the SP model
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reduced the fit error for this patient by .0135 RMSD

SLAM parameter constraints, we observed fits similar to that
of SP in the general population (Fig. S1), with noticeable
improvements for the conduction naming pattern (Fig. S2),
accompanied by high LA and low AM weights. With this
alternative arrangement, a three-parameter model with LM
weights fixed at .0001 still does not perform as well as the
two-parameter SP model (Fig. S3), although the failure is no
longer catastrophic, due to compensation by strong AM
weights. To summarize, these investigations confirm our main
finding that a second source of phonological feedback, pre-
dicted by HSFC theory to come from the auditory system, is
the critical component for improving model fits.
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Fig. 9 Scatterplot comparing model fits between SP and the semantic—

lexical-motor—auditory (SLMA) model, an alternative architecture with

the same number of parameters as SLAM, but with lexical-motor dom-

inance instead. The lines are the same as in Fig. 5. Unlike SLAM, SLMA

provides no obvious fit improvements over SP

Discussion

We put forward a new computational model of naming,
SLAM, inspired by a recent conceptual model, HSFC, aimed
at integrating psycholinguistic and motor-control models of
speech production. SLAM implemented the HSFC claims that
sublexical linguistic units have dual representations within
auditory and motor cortices, and that the conversion of audi-
tory targets to motor commands is a crucial computation for
lexical retrieval, even prior to overt production.

We showed that augmenting the well-established SP model to
incorporate auditory-to-motor conversion into the lexical-
retrieval process allowed the model to explain general aphasic
naming errors at least as well as the original SP model, while
improving the model’s ability to account for conduction naming
patterns in particular. The improvements in model fits were pre-
dicted to result from parameter settings with strong LA and weak
AM weights. Examining the naming responses of 255 aphasic
patients—the largest analysis of PNT responses to date—we
confirmed our predictions, and additionally demonstrated that,
unlike our theoretically motivated structural changes,
improvements due to added map resolution were not specific to
any aphasia type. We also discovered that the predicted weight
configuration, which yielded the greatest fit improvements, did
so by increasing formal errors at the expense of semantic errors.
It is worth noting in this context that Schwartz et al. (2006)
identified three anomalous subgroups whose naming patterns
significantly deviated from SP’s predictions, one of which exhib-
ited too many formal errors. Two of the patients in this subgroup
had conduction aphasia, and the other had Wermicke’s aphasia.
SLAM provides a plausible explanation for this subgroup. The
increase of formal errors at the expense of semantic errors in
conduction aphasia suggests that a significant proportion of their
phonologically related errors were generated at the lexical-
selection stage, rather than the phonological-selection stage, a
novel prediction of our model. We also found that two separate
phonological routes were required to produce the effect. Al-
though the auditory—motor integration loop described by HSFC
theory currently is not modeled in detail within SLAM, parallel
inputs and feedback to separate auditory and motor systems are a
prerequisite for state feedback control. The results of our model-
ing experiments thereby support the assumptions of the HSFC
framework.

Although we pitted SP and SLAM against one another, they
share many of their essential features. Thus, much of SLAM’s
success can be attributed to the original SP model’s assumptions.
The notions of computational simultaneity, hierarchical represen-
tation, interactivity among hierarchical layers, localized damage,
and continuity between random and well-formed outputs are
what enabled good predictions. The fact that we were able to
successfully extend the model reinforces the utility of these ideas.
Similarly, much of the criticism of SP applies equally to SLAM.
For instance, the very small lexicon can only approximate the
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structure of a real lexicon, and the semantic representations are
arbitrarily defined. Although the model is interactive, it does not
include lateral or inhibitory connections, which are essential fea-
tures of real neurological systems. Also, the model does not deal
directly with temporal information, which constitutes a large
body of the psycholinguistic evidence regarding speech process-
ing. Nevertheless, for examining the architectural assumptions of
the HSFC, SP provided a useful test bed, in that it has been the
best computational model available.

One further advantage of SLAM over SP (and over similar
models that assume a unified phonological network) is that
SLAM provides a built-in mechanism for repetition. Repetition
is often used in addition to naming as a test of lexical-retrieval
models, because repetition involves the same demands on the
motor production system as naming, but lacks the semantic
search component. In order to simulate repetition, however, some
form of auditory representation is necessary, even if it is implicit.
In Foygel and Dell (2000), the single-route SP model was used to
simulate repetition, without explicitly modeling the auditory in-
put, by assuming that perfect auditory recognition delivers a
boost directly to lexical units, essentially just the second step of
naming. Later, to account for patients with poor naming but
spared repetition abilities, a direct input-to-output phonology
route was added to the model (Hanley, Dell, Kay, & Baron,
2004). This dual-route model grafts the “nonlexical” route on
to SP, leaving the architecture and simulations of naming un-
changed; the two routes are used only during repetition. Al-
though several studies have generated empirical support for the
idea that the two routes are indeed used in repetition (Nozari,
Kittredge, Dell, & Schwartz, 2010), our study suggests that both
routes are used in naming as well, potentially providing a more
cohesive account of the computations underlying these tasks.
Given that SLAM already requires the auditory component for
naming, we intend to develop it to simulate repetition as well,
allowing for more direct comparisons to this alternative dual-
route model in the future.

Although SLAM does not employ learning or time-varying
representations, another lexical retrieval model that does imple-
ment these features has also adopted a similar separation of
auditory and motor speech representations. Ueno, Saito, Rogers,
and Ralph (2011) presented Lichtheim 2, a “neurocomputational”
model, which simulates naming, repetition, and comprehension
for healthy and aphasic speech processing, using a network archi-
tecture in which each layer of units corresponds to a brain region.
Lichtheim 2 does not categorize speech error types according to
SP’s more detailed taxonomy, however, making it hard to compare
directly with SLAM. Furthermore, since our goal with SLAM was
to investigate the effects of the separate phonological representa-
tions, and Lichtheim 2 shares this architectural assumption, we did
not compare the models directly. In Lichtheim 2, the phonology of
the input and the output is represented by a pattern of phonemic
features presented one cluster at a time, and semantic representa-
tions are temporally static and statistically independent of their
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corresponding phonological representations. The model is simul-
taneously trained on all three tasks, and hidden representations are
allowed to form in a largely unconstrained manner. The trained
network can then be “lesioned” in specific regions to simulate
aphasic performance. We see much in common between our ap-
proaches in terms of their theoretical motivations, proposing psy-
cholinguistic representations grounded in neuroanatomical evi-
dence. Furthermore, the use of a single network to perform multi-
ple tasks is very much in line with our plans to develop the SLAM
model. One major difference between SLAM and Lichtheim 2 is
that SLAM maintains an explicit hierarchical separation between
lexical units and phonological units, allowing for selection errors at
either stage. This hierarchical separation was essential for making
our successful predictions regarding conduction naming patterns.
It remains to be seen how our proposed architecture will cope with
multiple tasks simultaneously.

Another model of lexical production, WEAVER++/ARC
(Roelofs, 2014), has been proposed as an alternative to
Lichtheim 2. Although this model uses spreading activation
through small, fixed networks, as SP does, it also employs
condition-action rules to mediate task-relevant selection of
the network’s representations, thereby implementing a separa-
tion of declarative and procedural knowledge. Like Lichtheim
2, this model does not apply the detailed error taxonomy ex-
amined by SLAM, and so we did not compare them directly.
Importantly, though, WEAVER++/ARC and Lichtheim 2
largely agree on most cognitive and computational issues,
especially the primary one investigated by SLAM: the partic-
ipation of separate auditory and motor—phonological networks
in speech production. Additionally, like SLAM and Lichtheim
2, WEAVER++/ARC simulates the conduction aphasia pat-
tern by reducing weights between the input and output pho-
nemes. The primary disagreement between WEAVER++/
ARC and Lichtheim 2 is an anatomical one: Should the lexi-
cal-motor connections for speech production be associated
with the (dorsal) arcuate fasciculus or the (ventral) uncinate
fasciculus? At present, the SLAM model is compatible with
either position.? WEAVER++/ARC does differ from SLAM
with respect to one important theoretical point, however. In
WEAVER++/ARC, the input and output lexical units are sep-
arated, and in naming, activation primarily flows from lexical
output units to motor units. Auditory units then provide stabi-
lizing activation to motor units through an auditory feedback
loop (i.e., motor to auditory to motor), rather than being acti-
vated by a single lexical layer in parallel with motor units to
serve as sensory targets. This runs contrary to our finding that

2 One might wonder whether the lexical-motor and auditory-motor connec-
tion weights were generally correlated in our sample. They were not (= .10, p
=.09). This seems to indicate that these mappings are functionally and ana-
tomically distinct; however, WEAVER++/ARC also allows these routes to be
independently lesioned, so this is not necessarily a strong point of
disagreement.
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strong lexical-auditory feedback influenced lexical selection
for conduction aphasia. Again, it remains to be seen whether
our assumption of a single lexical layer can account for mul-
tiple tasks as Lichtheim 2 and WEAVER++/ARC do, which
we intend to explore in future work.

The SLAM model falls into a broad class of models that
can be described as “dual-route” models—that is, models that
posit separate but interacting processing streams controlling
behavior. Much of this work relates directly to Hickok and
Poeppel’s (2000, 2004, 2007) neuroanatomical dual-stream
framework for speech processing, in that the mapping be-
tween auditory and motor speech systems corresponds to the
dorsal stream, whereas the mapping between auditory and
lexical-semantic levels corresponds to the ventral stream. Al-
though Hickok and Poeppel discussed this cortical network
from the perspective of the auditory speech system, which
diverges into the two streams, picture naming traverses both
streams, going from conceptual to lexical to auditory (ventral
stream) and from auditory to motor (dorsal stream). One dif-
ference between the SLAM model and the Hickok and
Poeppel framework is that explicit connectivity is assumed
between the lexical and motor—phonological networks. Hick-
ok and Poeppel assumed (but didn’t discuss) connectivity be-
tween conceptual and motor systems, but did not specifically
entertain the possibility of lexical-to-motor speech networks.
The present model, along with the HSFC, thus refines the
Hickok and Poeppel dual-stream framework.
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Supplementary Material

We repeated our analyses with alternative parameter constraints for SLAM, called
SLAM-2, investigating whether our improved fits relied too much on the lexical-motor
route. The new parameters were constrained such that SL and LA max = .04, LM max =
.021, AM max = .5, and they were free to vary below those values (min =.0001). We
compared a SLAM-2 map with 2,321 points against the SP map (Figure S1). The results
were qualitatively similar to our initial SLAM model results, with good fits in general,
and notable improvements specifically for the Conduction group (Figure S2),
accompanied by high LA weights and low AM weights. Removing the LM route (i.e.,
fixing LM = .0001) created a 3-parameter model with a 745-point map, which still failed
to outperform the 2-parameter SP model (Figure S3). Thus, the critical component for the
observed fit improvements is the separate phonological feedback to the lexical layer from
auditory units.

U-'Id T T T T T T

012

Humkerof patieats

01

0.08

Bettar ft (1 §D) T

0.06f i

SLAM-2 RMSD

0.04

0.02

L 1 1 1
0.04 0.06 0.08 0.1 0.12 0.14
SP RMSD

Figure S1. Scatterplot comparing model fits for SP and SLAM-2, testing whether our
improved fits relied too much on LM weights. Diagonal lines are the same as in Figure 5.
Once again, results show good fits overall, and SLAM outperforms SP for a subgroup of
patients.

" The initial mapping procedure set LM max at .04, and then points with LM greater than or equal to .02
were removed, yielding an actual max LM of .0188.
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Figure S2. Individual fit changes between the SP and SLAM-2 models. Positive values
indicate better SLAM-2 fits. Anomic = red, Broca's = green, Conduction = blue,
Wernicke's = magenta, Other = black.
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Figure S3. Scatterplot comparing model fits for SP and SLAM-2 with the LM route
removed. Diagonal lines are the same as in Figure 5. This 3-parameter model does not
perform as well as the 2-parameter SP model, and thus it does not yield the improvements
seen with the 4-parameter model.
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T 2%E, HEHHHD S OFHEEHZ XD &L Vo FEEMBISEN T 5 2 L ICBIL TTH 5 (Hickok, 2012, 2014a, 2014b), T ZTl¥, Foygel
and Dell (2000) D& LR O LS IEFNFEE T V2, SEHFHEIEICA A4 7ENET—F T 7 F v 2 TEIET 22 LT, IO EZ
KOFEMICED, HLOEFTADBTFT—ZIckh & 74y b L, BRMICERTREZ HECIRESI NS89 2 3Hli T 5,

%9, AWFEOHERNIEEEZ R T DI,

1. Foygel and Dell (2000) D EE-FHRE 7V (SP) DEjHEZ I L,

2 GBI 7 70 —F % fHLIC BRI L

3.7 70 —F o T 2 KA DREDOBERIERAD 5 L OO B ZmF L,

4, EBEHIEED S DHARFIZ HWT SP ZBIEL, # L \WEK-FEHE-TEESEHB)€ 7L (SLAM) 275 2 L 2FiHT 5, X, SPET
L& SLAM € TV DRIETEDFME, SPETILE SLAM ETILVOMIKY S 2L —2a v (7)), ¥ Iab—varvofill, FhicHH
NS P RE 22 REBERFZ O N A 73 —IcBIL T, SLAM2SSPX D HENTWE I L3bhrok, BB, ZOFLWETILIME
DO HFEERE TNV E ED X I ICBHIL T A 0% 6w L T < € 5.

1. SP €5/l (The SP model)

SP I3 [@1986Dell_spread_activation] D XA RKIZE T RISV —Y 2F:fD, SPIFAARLEFROARBB L2 L 72 a VICR O B FEERD ©
TR TEFHT 20T S N, oML, DHEYESECOMEEZHEGLEZLDTH S,

DHEED S 1F,  EEOWNIBEBIA AT OERZ 3 ) SR FAR oM 2 AL, SEE2S 1L, BENARBL Ve, RE SRR
WREEA SN ARBEN L OB OF L L TONEE LD Az,

[@1997Dell_DSMSG] 13, H—fEDOFEFHICIRE L GtHET VR REL 72,

720, HERIAREEIERL, REBEORICB I 2HKFL 7 —0FiA%Z GO L X H L7,

RN Z 1%, RBEOBFR LI —Dy =13, BELAEFRAESATLAOHNZ KL TW3 DT, KiEEDOT—2ISHET 2 &
IFHDETNVDNRIRA—IZHETZILETETIUETEZ LI BDE SR, ZOEFTLDT—FFT7F viE, BB, i, THO3 -0
2=y b6k 3EDORy FY—7THREINTED, 2=y MEOEE, MWHNNLERIEOMEIIMT 5 & ) I EBREIC X 5 GER
N7z (X 1),

HEEDERI, /A4 R LR ORI EELoREZ /) IEEaR e L LTl L 2,

BEE, FHHLVEOFEE Lo EZFHIHT 289 A =9 2 EHT 2 2 Lic k> THEEINE,

Rz, ¥Ialb—=vaviEHoutT, KEEEBEVTIZI—IATELHEUL LI =94 T7OHEZFEIEE T A—FlHEREL K,

The semantic—phonological (SP) model architecture
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b0 b 53, [@2000Foygell Dell SP] 7> 55 F 2 —HoOiw (T, HKZWiIEHRZ &URlidGAHE» 0RO N T—F OB IZELRMEL G
HT 2ETIVND 2 ODHE T X — % DYRFE & #1172 (Abel, Huber, & Dell, 2009).
SERAAEANE (Kittredge, Dell, Verkuilen, & Schwartz, 2008), %7z 2 4 A 7D JFEAE I B S 2 B 72 = 5 — /8% — > [@2006Schwartz_Dell_SP], [A]
ORI 72 7% % —  (Schwartz & Brecher, 2000), £ & HHAIN T 7 —%I4 [@2000Foygell Dell SP] TH %, b2 2OHMT A—=F1E, =
WRFEH L SRR OB DO HEFRIE (s-weight) &, FEERE & SRR OMOEHEIE (p-weight) TH D, SPELTHIGN TR T —FF 7 F %
Thb,
SP %, HiFEKIE (Dell, Martin, & Schwartz, 2007) >, FRKHEIR TR 5 41 2 pfE2 ARG OME %2 P 2 72012 b I T E 7228 (Dell,
Schwartz, Nozari, Faseyitan, & Branch Coslett, 2013), & Z CTIZFIC fxliidr 4 7 — L OB IcER 2 YT 3,

SP I3 FHIZEIRL )L EFHL VO CHET 25 RICBE T 2, ZOETLOHNIRBMRNEERERITHY, ZharzFEzHlHlds%200
THENFHICAR L 2R s v ERES NS,
Rz, HEERIRSPERICED L ) IKHIHI I N T L 22D T oL & A FN AN R EKICH Z ) 5,

2. IR (Motor-control theory)

BHIEVL L)L, SEBFIENZE S X7 4 — BNy 207 0 OB RO EEN R AN B LEET S, ZUE, EHBTAEOHE
BlZIE, FEOREILAEDA Y 7, GERIHNT 2REDMEICH D Hy N ZERL, SHRBOBFEDREBICHTIER B AL, S
TN T 2 F O & HE) IR T 2D DFHE DO DA BB T2, BEBRI LG UL, TEIEIATRETHZ 2 L, BAR (Cole
& Sedgwick, 1992; Sanes, Mauritz, Evarts, Dalakas, & Chu, 1984) % %l (Bossom, 1974) TOREBILDOHCEIEI T 5, F, BEERIZ, E
B ICEE R 7 4 — PNy 758 Z BAE L (Wolpert, 1997; Wolpert, Ghahramani, & Jordan, 1995), L7 —IH EBIED A A= XL %2$MET 5 2 &8
RENT S (Kawato, 1999; Shadmehr, Smith, & Krakauer, 2010), LU, EHFEERD X I ITHEELEIERZ EEITIEE, 74— FXy 7D
N A RDLHVERE R EICED, 74— Ny JEEPMEHTELRVWEAERD S, oL BEAICE, RE7 4 — PNy ZHlfIRCEE T
W ERE TV EIBINT % 2 & T (Jacobs, 1993), B A & ERER R OB OB EEH U BEEZ AL T, RS2 EEEEICEL 22T
%, TOXHICLT, HMERERERIE, AV T4V TOERPHTICH>T, HRIHEFOWTWE I EWRBINS,

TR OB, b EEAEEHEIITER TH % (Guenther, Hampson, & Johnson, 1998; Perkell, 2012) 235, {AME:EEEHR & mELRH 25 L T»3
(Tremblay, Shiller, & Ostry, 2003), Tl 7 ¢+ — F Ny 7 OZALITHGTHICBIN 2B L2 52 5 2 L DVRENTE D (Houde & Jordan, 1998; Larson,
Burnett, Bauer, Kiran, & Hain, 2001; Yates, 1963), FahiZ DFGEREOEMIE TP 2 AF v — - FU 7 b, 2 HEFERY—vOBL (T 7
I; Sancier & Fowler, 1997) % 5| S Z T UMD H 2, X 51T, WEDOFEEZ WA L it A X —2 v VEBR©ik, MUEEORBTEEE E b
PO L T3 2 E—H LTl ST\ 5 (Callan et al., 2006; Hickok & Buchsbaum, 2003; Okada & Hickok, 2006),

FEEERIT B T 2R OBRENC OV TUE, FEICO W TOMELBANNIZE D S R ICBHEEO R VLB s nTw 5, MEEBIC k> TE
SERFIRE DM N GA L HAEDN TR WEEADHEE L Y =V 3H 5 2 L5, HEMEIIMAOGEHEHRZHER R SETRICTOTTH
% % & 9127 o> 2 (Caramazza, 1991; Jacquemot, Dupoux, & Bachoud-Levi, 2007; Pulvermuller, 1996; Wernicke, 1874/1969), i 2 1%, {nEJGEEE
(Goodglass, 1992) 1%, WIBLFEFEZ L TED, EHEHEPEEINTRE I EZ2FBLTVS, £/, 0o DRFFHEERMEICENTS
D, ATDE|D 2B 2 2 LHTE, WHEIAPRTFINTVRE I EZRRL TV,

COLIBWANCO20b 6T, HLOTFHREORI S, FHFEOHRDEBELICHEND L, oy —vik, —fkic, 2L 2HERR LE
ERORMOBHEOREI L L THHI T % (Anderson 5 1999; Geschwind, 1965; Hickok 2012; Hickok & 2000), {REJFEAEICEIT % Z D fild,
PIFIibR % k9 i, HEERMRPWEKREGVLEZED,

3. BL2EE S (Conceptional integration)

BEFEHIREE 7 4 — RNy 7 §lffl (HSFC [@2012Hickok HSFC)) € 7V 3D S B AL & A A skl R oa 2 A7 2 72 0 0 RN
Petla 24206 2, 2 O aE 3 Do h L EEZ IR EhTwe 3,

L1, BFRERIICGERERE ESEZEOMEMN Ry a—T 2 v BT 2, 2o 3EFEER I (PR L) Efior Lic
E2 oL TiEE LI NS

2.5 210%, BT LERFF oM O BEN: L IIGIEO R ORED Y — v, EREOEEFIEREIC X o TN S SEBEHE A5 0w
BRECOES 7 0 77 L o@RICE ) U 2 WREED D B b b 5, EBIRBLZ B HENC A o THEENOE S 2 ENTEZ—ED
HIHBH ETNEFEELTHL LV LTHD,

3.3 oJFEINE, HFEAEKEY R — T 2EREHEEIR Y b7 -7 RNt cws e Th D, BRHEEEEIIEER (XD IEREIC
1Z, HRHEEGRE L LTS N s B2 EOFEL L0 B OIS B 2 WL, BES IS S ONE IR F B
(ThHLLHFEAR) ZUMT 3,

HSFC 7 L — 27— 7 OEAX % Kvref{fig2} IR T, —&LOED (AR IZSPD 2D DATy 72EHL T3, HFiHmN 2 EED B
REHR Y b7 =7 LEB-EEHRY P —7 D20 DY 7 avR—2 Y MIORINTVE I Lb2 5, ZOMRNZEEICKD H— M
ICEEZBEE L fthod 20 OJFHICE NI T 25 L WETEE TV EZERT 2 2 itk ok, HAIZHSFCETLDT—F 77 F % LOE
%, MENL SN L @& DT TN TH S SP AT 22 LT, HMAMICTHEiTE 2 &#EmL 7,
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Fig. 2 A schematic diagram of the hierarchical state feedback control (HSFC) framework (Hickok, 2012)
4. The SLAM model

SLAM & ¥ HEEBZ IR LB BRI oH L 2 FBEMREEE T L ch 2 (X3), FED 2 BREIL % 1 © HSFC FHEUCEEE> TWwW 5,
FEREEBE T3 2 LB 3 FHICHESC b DTHY FHCZ DL VO F LI EFEEL DO REVE Z L 2EHKT S, LH»L SLAMET LD
Bl Ry — 2 1E ) A RO SEEG AR LT 2 2 L TELZ ORI/ E TN EEELTVwE, FaoHEU EE) L REOFEER E 5
BT 20 7T—FF 7 F v LOREDREZ T 5 7201 SP DFHE LOER TRV BIFET 22 TH o7z,

'YTTY T

N LIIITITITY Tk

Semantic-Lexical weight

Lexical-Motor weight

ipht < LA weight

Auditory-Motor weight

Fig. 3 The semantic—lexical-auditory—motor (SLAM) model architecture

R AHED Y S 2L —y a ol BT ERL2=y b oiifta =y b, fiR2=y b, #Bja=y bALTiND, DK, Zo®
FV% SLAM L&KL T B, F/, o=y b EEE2=y P EORITIE, X DFHOEBENREROEET S, 233 Wernicke (1874/1969) D
WEWCETHE LD TH S, BEIGEEICELTRBIPHRSIN, T7—DRWHKiEE2 T2 L2HHAT DB TE R DTHSE, Lo
L, 2Dk BERREE (21 d Wemicke DUFIDFHE Z) X D HHEICHL, WL OLDHPEHEE LoTWw3,

o BB 1T BEGE-GEAEAEIS L, FEA-EDIREEE L D D RMNCHEL, KBTI NS LREI NS MMINARTIZRIC & 21E, T IRHEER
AT BEr ARNIC A— D HFEZ PR L IR, Fifo (CFfR U 728351, Hi o L 25D K6 OMETHE T2 2 LR EnTwn?
(Benedict, 1979),

o B 2 I VESHIEHE I ESFEIIEREN A BB Lo THLPINTVE I EERLTVS, FEOMRKET, ¥EFEIHENEEZ22H
L, FiEE L ZOEEZHET 2P 2 AF v — DO~ v © ¥ 7% 248 LUl 5 7%\ (Hickok, 2012; Hickok, Houde, & Rong, 2011),

o H3IC REBEOXNRTIE, PRREREIZAERE XD LRIET 2055 D (Lomas & Kertesz, 1978) FEHZREL & MR EHEROBIIZ XD
HOBIHMED H B Z LR RBL TS,

=N

PR e vy v 2L, BESEEIy EY 7D SEICEW E W IKEIE, BELFEREZL ST ThbL, SLAM E TIAVDSHICRIT Ry
ZROSPETFTNTIRAVWI EZEWRT 5, EBRICIZSP & SLAM B AN—T 2337 X =y ERIOEHIZFE LY TH S, ZOMEIZLNowE
DCTH2, M3DSLAM 7 —X77F v %4725 &L, SPETFINIE, HBHRMENGEROMAREL BR-EHEHROSEARE B EBEROEA
BEELOICHREL, BEREDEROMEAREZAMICE(LEE LI L TSP 2EETEL LIRS TH S, T D, SPIX SLAM Di#
Y7y Mz, SLAMIZSP LRI SF A —F 2 (LB TTF—F D74y M) ZAN—FTBIENTELLHICAKS, Lal,
CO7—%77F v ORI, FERE-TERERARED SBA-E1E AR L D DEICHO L I RL DIERZHEET 2 L2 k> THIRMICHE
W& 7, RS ARED 0 Thiud HaE-EHEREARED 0 Ca TR ST, BHICZLT 22 LR TER Y, OF D SPIC k> THA
ENBRT A= HEMEFRELERNT 2, kD, BRBEREREEDS G SN2 FELRKETH 2 &) SLAM DREE X 5 1K
AET 2 EDITED, F WO Tab b ER-EREROMAREE I FSERSEHEROFMARE L D b LIGEIC T T L OMEEEH
NBZEHTES, Fffe B L KT 57201 Fxld TSLMA; EIERZ EHTES, SLAM & SLMA B[RO HB/$T7 2 —% % £
L, EL5HSPOZNIN B L, 208, BEHE Sy — VBl CIEERALZIREEZFFD, B L SLAMASLMA LD RWERZHBET TN
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13 SLMA 13 SP %2 Z D87 X — 7 220 2 P EAE L TEBEL TWRICH b 6, HER-BERRK OB ESBEGRNIC B s T w
BETTRL, BEINAKECHBETHE I EEHIATEIIEITRBES),

T2 L SLAM 34 7% L b SP L AR — BN REHEDOEMICE T 2 REZ RO, TIEEWIEEED T T MBIIKLIOTHS I v
IREE % LT e, (RBAREEAE L, FRHOEHL VIR L 5 2 258 @SR RIOMOA v ¥ —7 2 — A ORERE L L CHHI N5 D
T H % [@2011Hickok_state_feedback control;@2012Hickok HSFC], L 7:23->C, HES-HHAREL & HE-HHEREL L O OEGREZHAAA TR
MAET NI, ZOEBROEEARIERT2HIEL 7 —1c LT, XORVT7 4y MERRET 23T TH 2, ZONRIEWKIET 5701,
KEME DGR AT — 7 DRIy ML TSP EF N E SLAMEFTAD 7 4 v b % L 72,

5. 2 Y ¥ 2— % 9% (Computational implementation)

5.1 J#FH 57— % (Patient data)

T XT DT — 4 I3 Moss Aphasia Psycholinguistic Project Database (Mirman et al., 2010) 2> 5 EE I N7z, TDT—FR—RIZE, 74 7TV 747T
frmiay A (PNT;[@1996Roach_Philadelphia Naming_Test]) DRI%E % &ir, KEEBREORKBECRENLE IV — 706 DEESINTORWT
—IDEENTEY, —MA4TH 175 oMLy FPEEFN TV, T—FR=ALEFINTOLTRTORFE, FLERNAEFEO S
REERET, oM ENOFEIROBN 2T TE5, PR EB 1 OO PNTHEHZIEMHICHATE 2 ER8TEL, ki, KEEDSA
7B X URIEBRDO A (N = 255) &, FIARRE AR ACHGEHENERZ RO T —F R—ANDTRTOEHITOWT, HICHEML 72 PNT
MEAERZ WL, ar—FiE, 77 I—H103A, 7asBeoA, {ZER46N, Ty 35N, ZOMDRIEE IAT, #HEHE
JERGER, EREDEENR,  IREIIRE, R eERMEOBEEET B 0D TH ok, EETHE O AP IR 28 [1,381], PNT DIEZA KRR i3
76.4[1,99] TH > 7,

5.2 %€ 7 )L (Computational models)

BB & 912 SP 1d [@2000Foygell Dell SP] IZ & o TIRFNICHEI N, ZOEFLDREGHS I 2L —2aryd 7 7u—Fi3, 2 BEHEH
WAL 2 o 2GR 2 HE L 2 b 0T, BWEdS, i, s zRIlcor=y r2/FO3 oy b7 — 7 I N
TV 1), 2=y MEEER NS — ik, WEOFFRED YA TOMGHERZAMT 22 EZ2HMWELTED, 6 DOHFEDH L 1 D23
RE 7 DYETHRINIER /NS REBRIEHEZFEEL TVE, ZOEFIVIZ6 2DHERLI-y F2E&A, ZNFNHEKRNEHEZERT
10 OFML=y McERIN TS, BHRNBEHT 2HEIZ 3 20BRI=y F2HEELTEYD, BHRWICY =7y McBEMET 25N 1
RO ARSI TR, 2y P72 AR ST OBRI=y FER-o TR I LEERT S, F/, KiEEI=v ML, Aviev i, B
H, a—FICHIET 53 00FHLI=y MIEHRIN TS, FEHLI=Y ML, 620F vy b, 22008, 22023 —% D&l 10fHTH
o7, HHEICBIEIT 25—y FiEL, 2ot viy bazy PEIBEZRD, v b= 2 ODHETHKI N, Rk, *
v F7 =27 NDERD D2 ODOHEEIZY —7 v b EIFMEARTH D, BRSO HFEWICHIEINTOLRY, 20% OFIT TR, EREAVICEIET
BHZENERIICHBREL TR Y, =4 v b & NEA) BR2ROBHEEZERL T\V»3,

MMM ZHEDY T a2 —vavid, BRazy FADOIFEELEED B I ERSIRED, 20D FTX = S EP EIX, ZFNEFNERE-EWRES
&R TR OB DEAZIRET 5, WM, 74 X EWEZEORISEECINCIE > TSR A T v 7C, WA 2R cRkR I
%, 20k, mLIGEELINTOIiEEL=y M2 BHOEELD 7—X F3k o s, EEMIE, XS8R T v I > TED
D5, mtglc, mbLIEELInFHEOA vy b, BE, a—F 2=y FPIHTE L GEIREN, ¥—7 v LIS, mEL
RUMETT 2L ) A ROFETERL S —0FAET 2, 7228, THIHROEHIC > TEMIN S, IBEE, ELubo, =k, B
BA, HEE, FEECOEIND, 5A6NE8TA—FHREIH LT, TFAEZHOTEHL OMEARTEITIZET, 16 6D DINEY A
T 2L HNVHEE I ND, TN D%, KEBEREDER L @A IRORR L KT 5 2 L8 TE 5,

SLAM (% SP Dl 2 % CRFEL TR D, FWT7—F 77 F v LHOMRZMIT 2 2 E2ZHWE LT3, Hkz=v b &L=y MIE
HINToky, 225, FHIz=y boar—N8MIncws, FAEEE2=y F, dHIRFAIGEDG2=y FTH 5 (M3), Hk-FEHaE
Bt (SL), FEAR-WEEHEGE (LA), A EBEEeE (LM), BER-SEEEER (AM) OWHRDEALAZ 4 DD/ F A —F TIEET S, LA & LM O IF
SPETIL DOPEHEFALTHY, FKiEFEi=y MI3ZODREHELE 3 ODEBIZ =y MIERL TV, 725, AM OEIFHHMIC 151 TH
%, Rl 22— avid SPETIVERL 2 BBOFETITbN, BRi=y b eIy MII7—RA M52 60, d#ja=y b
WTHBHER TN S,

53 57 —4% 7 4 v F 4 ¥ (Fitting data)

TR IHEZIE D0, TETNVETFICBRIHNM %2 L0 TRLRLZINTIA—=IDLy b TSN, /37 X —FEHD 6 T — 5 ZZH~
OEMREFEHKDER SN, FLZ2oWbirbh s, ZOBETE, T3, S$7X—5%fioty s #HIZIX, SEPOEA) ZERL, X,
ZDNRIA=F Ly bEFHALT, ZOREDETADOLY b7y P THET S  BOINEDZNEFNOBELRHEE T 22D, ZDT7 X
— Yy FEFEHLTET VDL OMAMTEZERT 2, INOOHENREI NG L, ZOEAMRIE, HIXEFIN LMY R FOH5y
AICB#M s s, ZOHROERIL, REGAEBET BRI I ZHHEAL T — Y —vORIZO2LTOFHZEL TS, ETIL
G 32 —2o D, ZOFHBENINEHED L7 — Ry —vicENL TR EHET S ETH5E, BlINTHEETILD
RLFEVY I 2L —vary 3NEOhE oMo, 207 — 2 MIINT2EF VWAL L VI, BTVEPEY RF% RMSD) 1&, TE#7
2, —WINEH SN EAEDORET, RIEEIA 7OEEREAEL LTHRTE 5, 7L 21X RMSD 28 0.02 D4, BIllS n-BlarsFil
N7HED ST T0.02 ZI@BLL T2 2 L 2T (k& zE, Pl = [.50,.50]; Bl = [.48,.52]), T X9 I RMSD HAMELIZE €57
VOBEWEDENI EERLTWS, T, EDLKSVDRA Y FEERTRED, NTERTFHEZEERLEZVEIIRNTIXA=FE2ED LS
WGEIRT 220, L) REPAEL %,
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[@2000Foygell Dell SP] l&fffke LT, /%7 X —% B O EMGIEHN %2 ER T 27D DIESHE R 2 I Z 7 3V XL L & DITHREL TY
3, fiolx, 2 v Y7 RAOREDERIE, ZOPERFENARREDLLSTIRD, BEAMEICIZ LA CEEL L2 L OREIE
EIRLTVwS, NI X=9%El<y EY IDIODE D7 )L 3 X AL Dell, Lawler, Harris, and Gordon (2004) IZ & » Tz, Zns

DHRIZA > 4 THATETH D, ZOBOEBHTHLHEHAINTVE4:D, INS5DMKASP DIEMEL EZ 2 5N TWw5s, I SPHINIZ
BRT10,000 ¥~ 7LD 3,782 R4 ~ P &RFED, ERICHHOERREEZMNELE L, HOHIZ, 2y EV I FIHICBET 252X M, €
FTLOBFKE T AL DLDDOPBEYDR IRy 7 EH>TOET, HRICH L WEZENT 2 2 &, FHIPBIINCEWALEIC H 2 TTREMESS
MET2, 22, EFTLOHLOTPHEDOX y P2 2 2IcoNTY ¥ =V iEHd 75, Dell IRELTwS kI, HERR#ELHEAZ R
DB ERDT, EFNVOWEEA LIS 2OICHREZENT 22 Ed, 8256 CERT MDD 2 2 £ TH S (G. Dell, FAZ July 12,

2013), X 512 SLAM I 2 DDBEN ST XA =8 038 % 70X % & D ZIHINCAER T 2012y EV I FRIEZBIET 20803 H 5,

Brlx, wvEVITAITY RLEHEKEIL, ZOEEOUIEEZNATS LT, FHFELREICH ESEL, 2y EVITLITY XLIIIEE
W2DODKEAT Y 7HH % sUBIRE MG TH 5, 87 XA — 5 EMNDOROMERE, ETFNADIODAELENNT A —FREICL > TERESN
(OB, F— 7 ZEHNORNIET 3 51F, 2O XA =Y FRETERINLIGE YA TOHEAIC L > TERI NS (HEHl, M2 7 v 713,
Ial—Ya VM LA, HNI LYY L, MY LRSI A=Yy MCELBoTEEINS 0, WIHKICIERICHEL Tw3,
LaL, ma#ERIC, WHLZET 27200 L w7 70 —FBRETHh o7, Fa—2 X v 2 DBEELTH B,

FTur—2ZAMEIE, SOEGEHESSI77THY, EROBHEHOHANPEADMDNEZE TRV I I 7ThHL, D777, ABROMD
BEEEBIR A2 RIE T 2 L LI FEEED, L OBMARRMNANRMELZR > Twa, HLOAER7 LY XL, s oBERRERAHL T
W3, NRIRXA—YERRFHOBEFIHIET 2 EZ0Ly Fus FRomED, <7 X—5EENOBET 2 2 DD OO M7 — £ 22[H
WD L & W{EERE (RMSD) 22 2354, 206087 X — 5 ZHOPEDFHTD 72 0 IGERE N, <~y FIGBME NS, R, INsDHL
VBT R =3 Xy 2 lGEMEN, TRTOAPL EWETICE2 ETUEPEVEINSE, 20k, FREICBWT, MER7LVT
VRALIE, 7 A —FBREMEEEICDL > THINCTHE I N2 EE DM Z 7567, MHMIIL, #MEE2SsCALITILDIC, 7I974
vy A Jukyrr 2=y b (GPU) LTHEITINL,

SP & SLAM DWREA FEFHWIC I T 20012, T A7 4 v MIHT 2 MXREORIREZHE L7z, RO, 37 X —& = OGN R
ZAERIT 2720, /INE I RMSD L E2WE0.01 2L T, HETFVICOWTHEEMBEEOMM Z (ER L 72, #HIXIFE 5T 10,000 4> 7L %
EH, 287 A =5 IFMA LT [.0001,0.04] OHIFHCELL 72, ST X =y OFAftIE, liENILSTELEIVECDIT—DRETZ LIS,
ELVIBEDOHED RS E 2 2REMOE 12742 X ) IGERI N, Rouey BV S LEWEE[MAL 272D, 7L3) X0E, FRICK
ERBOREERL %, TETHNEILI N, T XL FSGELAERRHPHICO 72> THERNICHZEIRT 20T, IR TIIRE RES
TlE%V, ZOHEIZFA, SEEREMENANA-L AP HMKOBRREE TIP3 2 L 28MAaREIC L Tw L,

22y BV IFIETSLAM T FNLOMHD 31,593 MAEERL, N7 XA—FyEHBRIELLEEZ, ZOHSLAM 7—%7 7 F ¥ IZfE>TLM
> LA ZFOTRTORZHIRL 17,786 KD SLAM HuX % 7, 5847 SP HIKIZ 57,011 HCTH o7, RICKERHKHDOF S, NENIC
IR % BT 58 505 17,00005 FTOWTEGZERL T, FEFMITOWT 50 HOIRPEEHIK 2 B L 72, #HIRIZDWT, KB EE
EREBWITES LI, HREDHREZRVAEE 74y PEFELL, K41k 74y bRz 70y FL2b0TH S, MHDETILTFHIN
kI, MEEMTZILET7 4y MIVZ—v2EA LarodES Nk, KPofic~e— 7 ik 2,321 5HECHNIN 28435 —
VIREELTVwB LI LA, LEkdoT, &AIE, ZOHIXEERE TSP & SLAM 2T 2 2 L 2FEIRL 72,

a b

014

T T T T T T T
o012k

o1f k!

014

008 |

|
omh |

004k =

Mean fit (RMSD)
Mean fit (RMSD)

e
002k .

" 1 ) L L L L L 1 " L i A L . L L L
5 0 2 Bl W7 2@ 15 1411 323 7415 17000 5 2 5 M7 8 615 W11 334 7415 17000
# of map points # of map points

X 4 (A) &RBE L B) ZWHOTE 7 + v MR, SRV HNOROHERIE, MEHHRICER L2~y 72 R"T

F L OATNAEIR S 7 X & BUERY 2e8ie AR i S N & R I 2 720, T4 3E, FHBIUCRAZ7 4 v FORT, Schwartz 5
(2006) THE S N & ABROMEEEZE 72 5 TAF] SPHIKIOMREZFE L7z, 2D 94 ADBEFICOWT, 189 mdifFl SP X TIE,
HBINTVBIETH S 0.024 £ 0.084 &L L T, VIl & 5K RMSD 13 2 11241 0.0238 £ 0.0785 TH o7z, FRED, WMHI7L TV X LI3E
RPNV XL KD HIZDDICERMIC S 28R L, RO ZER T 2 - DI BB FIER D 7% otz Trox ik, BEHED SPHBXIC N
ZEMT 2R L SP OREEZ MG T 2R Z T 272 D12, ZORMREOHNEZR—ZAF7 4 v ELTHHLE, RAD 74 v T4 v 70—
F AL, WREDA Y 74 v CHATREZEHERN 2 SPHIKI L D DR WT 4 v 74 v I PB SN DT (Dell et al,, 2004) F 4 1%, 'L DFL\WE
TV &M, HUXRMRE % BRI L2 RA D7 4 v T4 v TN —F V%, DTD Web 7 FL A THRMEL 7,
http://cogsci.uci.edu/~alns/webfit.html

6. 7k (Results)
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AN SLAM 23— 72 REEREEN D SP L ARRICA % L b T =Y ICHAET 2 LW I RIAEMEE L 72, T XTDOIHTIE MATLAB Y 7 b7 =

TN =YL CESFIN, LX) I BAITEARNIEE LTRMSD 232 2 &E 2L 72 (2 2ClE, fEIMERWIZ A
NRWIEZEKT 2), £1IFBEEORY Y PLBIOEEHED 5 DD I A4 FI2 oL TOEFLVEGOHNBHEIRZRL TS, X513

SP & SLAM D&% Hilig L - 8K TH 3, EMOMARRIZE T UBEMNTH 2 L VI RIELEL, MEUIT Y PV OHEAED 1 R %

RLTW3, WDOEFADBEEIIEFICE CHEEL, REMDEHED 00Q2RMSDUTIZZ 9 A Y v LTwARZEDBHLLTH S, Wit
FONF— BRI & ) S Z2 6 THAND 205, BEDOY 77N — 72 1-SD DERALS REL AN TVBE I EHHSLTH D, K5D
AKX SP £ SLAM D ES 5D HMNEEDR R o7 (> 1SD) BEDOEEIE L 72/ 7 7 T SLAM 28 EMcoME& 2 BEIc T2 2 ¢ 7%
, YhBVWHEEZBEEDY 7N — I it T 2 2 L 2R LTV 5,

Table 1  Descriptive statistics for SLAM and SP model fits

sp SLAM
S P RMSD RMSD SL LM LA AM
All Mean 0241 0232 0194 0187 0242 0152 10300 0254
N=255 St. Dev. 0118 0075 0189 0189 0121 0059 10085 0135
Median 0256 0224 0127 o111 10250 0151 0300 0300

IQR  [.0170,.0341] [.0179,.0281]
Range  [.0001,.0400] [.0062,.0400]

0071,.0264] [.0067,.0246] [.0176,.0347] [.0113,.0200] [.0225,.0388] [.0151,.0388]
10010,.1273] [.0019,.1977] [.0001,.0400] [.0026,.0300] [.0010,.0400] [.0001,.0400]

Anomic  Mean 0299 0274 0110 0115 10299 0181 0308 0296
N=103 St. Dev. 0081 0070 10095 0095 L0085 0054 L0080 0113
Median 0296 0266 10082 10085 L0300 0176 0325 0350
IQR  [.0241,.0376] [.0219,.0318] [.0049,.0137] [.0056,.0141] [.0250,.0400] [.0151,.0200] [.0250,.0400] [.0204,.0400]
Range  [.0054,.0400] [.0106,.0400] [.0010,.0654] [.0019,.0685] [.0063,.0400] [.0038,.0300] [.0101,.0400] [.0001,.0400]
Broca’s  Mean 0215 0218 10238 0240 0217 0143 0267 0266
N=60 St. Dev. 0125 0071 0243 0250 0128 0053 10088 0144
Median 0205 0202 0145 0149 10200 0126 0250 0325

IQR  [0139,.0334] [.0174,.0262] [.0076,.0312] [.0075,.0300] [.0144,.0313
Range  [.0001,.0400] [.0075,.0400] [.0012,.1273] [.0019,.1292] [.0001,.0400

[.0101,.0176] [.0200,.0350] [.0188,.0400]
[.0026,.0275] [.0101,.0400] [.0001,.0400]

Conduction Mean 0245 0182 10203 0157 0250 0120 0323 0163
N=46 St. Dev. 0110 0053 0153 0137 0110 0048 10089 0134
Median 0259 0177 0175 0110 0275 0126 0375 0144

IQR  [0020,.0331] [.0145,.0219] [.0078,.0282] [.0063,.0217]
Range  [.0001,.0400] [.0062,.0300] [.0019,.0720] [.0028,.0727]

0188, .0338] [.0088,.0138]
0001, .0400] [.0038,.0275]

10250,.0400] [.0038,.0238]
0101,.0400] [.0001,.0400]

Wernicke’s Mean 0126 0195 0332 0318 0123 0115 0305 0233
N=35 St. Dev. .0095 10059 10209 0225 0096 0051 0080 0130
Median 0133 0193 0294 0275 0126 0101 0325 0250

IQR  [.0039,.0187] [0152,.0248] [.0155,.0448] [0139,.0472] [.0032, 0185

[.0076,.0151] [.0232,.0388

[.0123,.0350]

Range  [0002,.0400] [.0070,.0327] [.0042,.0979] [.0038,.0989] [.0001,.0400] [.0038,.0225] [.0163,.0400] [.0001,.0400]

Other Mean 0180 0255 0275 0283 0178 0173 0293 0246

N=11 St. Dev. 0148 0073 0222 0221 0148 0057 10080 0123
Median 0173 0257 0143 0125 0176 0176 0275 0275

IQR  [0019,.0265] [.0220,.0301] [.0087,.0488] [.0106,.0488] [.0023,.0250] [.0151,.0200] [.0250,.0372
Range  [.0003,.0400] [.0133,.0400

[.0200,.0319]
[.0049, .0617] [.0057,.0628] [.0001,.0400] [.0076,.0288] [.0151,.0400] [.0001,.0400]

014 35
0! :
525 =
012F :3-20
[=]
21
0.1}F Ko
z
o 3
E 008 SPEleﬂlerﬁ‘t{'l soo ™ 1
= .
< 006} &
= 82
o .
004t D
- 5 . .* : . .‘
A
002} 5 o
e 3t
AL
-
D 5 1 1 ' L L 1 '
0 0.02 0.04 0.06 0.08 0.1 012 0.14
SP RMSD

XI5SP & SLAM DE TN 7 4 v b &I L #fiX, RNoOFEUIAFED 7 4 v MEERL, Sy 7ricBd274y
FMEDEN1SDTHB I EZ2RL TS, KEBOBERZHEFTLEDL LS 74y FLTED, —EDEEIZ SLAM D J7H5H
FZT7 4 v P LT3 (EAK),

RIZ SLAM PMEBIGHEICR L L e T LVEAZHET 2 L0 RMABGEEL 72, K 6 (ZFGHED Y 4 7Hlic 7V — L L Iflx DEFDET
LD RMSD DZ#EZRLTW5, IEDEDEIZSP L DB SLAM DA 7 4 v bBEEINLI EZR LTS, SLAM € FIVIIMGEIRZE L
=7 L TIRRD» DR G —H L 2 AYEEZ ML L TE D Wericke BED HAED KD FTLVETLVOREZZII TV 2 LIRHS»TH
%, Wernicke DJEEED SLAM IZ & o GHADKESI 1172 £ ) HEIZ HSFC BlEH & —3 L T3, )=y 7 REER, mEEEE L BN
2 & B AR RS LB L TR Y, Ay o=y A EEEHETIE, BEME 07 7 A VISEWIREBICEIET 2 2 %L, BEEDE
PBINHBEIN TR B I EZRBL TS, 5 ODRBEY 75 A4 7THOMEAUGEZFFHIC KT 272012, F4 13 RMSD D&k
BRI (ANOVA %470, 20— 7O VEEORIZ A &b 1 DOAEA (p < 0.001) 2R/ L%, 74a—7 v 74 EHAGA
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BRcl, 7 4 v FEGED 95% SHEIX A Wernicke Z 0D EDRED ZNE B S B ot, DT, EHEFIbo EOREX D B SLAM
o L% DREEZITI ENRE N,

285
——— anomic
Broca's

— conduction
—— Wernicke's
—— other

[

o

=1

o

o

=

001 0005 0 0005 a0t o015 0.0z
Fit improvement (RMSD)

X 6.SPETINE SLAMET VDML D7 4 v DL, IEOMEIZSLAM D7 4 v FBEWI EEZRLTWVS

INSDMREZISICHMIET 572012, SPYy 7 ORGEL B2 LIk 37 4 v FeED, EOBWIEHC SEHICEFICEIC ) 2% BEE
L7z, BRSSO o SN aZH L 38D €TV 74 v b2KET 2 ZOHETE, FEORICHRICAZ 2 Lid PRI ZDL->
oo TR, THIL CCHROEHENZR SP =y 7 EHZED 189 D SP vy 7k, XD EMBRED 2321 DO SP =y 7OETILT 4 v bR L
72o 255 NOBERETIESPYy 7 OFRA ¥ MEEPLT I LT, 7 4 v 5%0.0230 RMSD 2> 5 0.0206 RMSD ICHEICHE L 72(p < .001

Yo 74 FOWHER, TRTOBW /LTI L THETH 2 (TRTDOp < 0.001); LarL, 740—7 v 7% EMEREZ A7 —
YK ANOVA Tl, EDOMDMDTRTOML D bAERMIIRELLEZEZF > Chd o7 2 ARSI N (REREFIXHS R ), RIEBEES
W=7 ZH/HN LTk OREEETIC X > TERI NI L3 RE 25, b DIC Wernicke HEDNRDBEE L 72 DICHT L, RAFHIZRDLEEL
otz BRI, INSDOHBZNENSP DIODIRED 7 4 v PERRD7 4y b ThHLEVHIBELE TS, oL, HHN
ICEIFED T 5N SPETIL D7 —F 77 F ¥ DEEIC K > TH 726 S BEAMEOUGE R, fhoTFRIck>sTRoNASEE L ITENICELR S &
W) ZEREKRL TV,

FexlxE, BERBHGHRY —VIZFRED SLAMBERIC K > THAINIRETH S E VLI RFIZ LTI B0 LA L5590 AM OEAR, 7

1 v MEORRKOWHE LR LILEBH TR, ZHEFEBRICZ I ThHo7, K713 ROBAYE 2SD M L) 2R L 7% 20 AOBEF (ZH 13A, 7
ANy RSN, REFRIA, 7ahR1IAN) D SLAM 7 24 MERZERTELDICRy 7270y F2FHL TV, 8 % {REMEARGE
TEOHIDEBENPSDT—5 %, MIET 2 SP & SLAMETLDOHEAGE EDIRL TS, SPETNDREREARAIXS EPIZOWVT, ZNEN
0.022 £ 0017 THo7z, ZDHEEDSLAM EFILTIESL & LM 23ZNZF410.023 &£ 0.013 THo7DIZH L LA DEAIZ 0.04 TRALS 1L AM
DEAIL 0.0001 THRAMLI N7z, ZDOEEZETIE SLAM I3 SP D#EIREE 0.0135 RMSD Tl S €7, Z DHilld SLAM @ SP KT % i KD
BUYGED, BN (B L OEME) =7 —0—H LA L LD, BRZ 7 -0 PHBEEDO B L 2Nz EoTwa 2 bR LTwS, BX
I7—EBRLI—D L — A 713 RYDESRIRZ 7 v 7 CHET 2R E v, B —0 BmoME 2% b R L FiH
DOTNDDERPETIHET 2 UMD H B 2 L 1Z SPETFNDRHMD—>TH %, [@2000Foygell Dell SP] i3 FERIRIE DN b 12, Esa
=y FADOTFHRNT 4 — PNy I REKRINT 4 — F 7 47— FOiEMEALE LRIZEACHEMT 2 2 L 2R L7, BERFEETIE LA DEANKE
WEFERIZ Y FADBOEET7 4 —FRAy IR NZDICHL, AM & LM OEAIVNI B EHETIZ =y P ADFFOEFEET7 4 —F7+7—F
PEoND, AM XD H LM OADIKRE VLS, NIERECEHHRMCEE L Z23EREE2 5 X D % il laih, ZiUul Xk o> TEERN R
D 2RI L OBRINARR D 23T 5, BEIGEE T, BEE-FHE7 4 — PNy 7 O I ONERERICEE 2 52 T 2 EDIRBR I N,
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