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Using goal-driven deep learning models to understand

sensory cortex

Daniel L K Yamins!2 & James ] DiCarlo!2

Fueled by innovation in the computer vision and artificial
intelligence communities, recent developments in
computational neuroscience have used goal-driven hierarchical
convolutional neural networks (HCNNs) to make strides in
modeling neural single-unit and population responses in higher
visual cortical areas. In this Perspective, we review the recent
progress in a broader modeling context and describe some of
the key technical innovations that have supported it. We then
outline how the goal-driven HCNN approach can be used to
delve even more deeply into understanding the development
and organization of sensory cortical processing.

What should one expect of a model of sensory cortex?

Brains actively reformat incoming sensory data to better serve their
host organism’s behavioral needs (Fig. 1a). In human vision, retinal
input is converted into rich object-centric scenes; in human audition,
sound waves become words and sentences. The core problem is that
the natural axes of sensory input space (for example, photoreceptor
or hair cell potentials) are not well-aligned with the axes along which
high-level behaviorally relevant constructs vary. For example, in vis-
ual data, object translation, rotation, motion in depth, deformation,
lighting changes and so forth cause complex nonlinear changes in the
original input space (the retina). Conversely, images of two objects
that are ecologically quite distinct—for example, different individuals’
faces—can be very close together in pixel space. Behaviorally relevant
dimensions are thus ‘entangled’ in this input space, and brains must
accomplish the untangling!-2.

Two foundational empirical observations about cortical sensory
systems are that they consist of a series of anatomically distinguish-
able but connected areas®* (Fig. 1b) and that the initial wave of neural
activity during the first 100 ms after a stimulus change unfolds as a
cascade along that series of areas?. Each individual stage of the cascade
performs very simple neural operations such as weighted linear sums
of inputs or nonlinearities such as activation thresholds and competi-
tive normalization®. However, complex nonlinear transformations can
arise from simple stages applied in series®. Since the original input
entanglement was highly nonlinear, the untangling process must also
be highly nonlinear.
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The space of possible nonlinear transformations that the brains
neural networks could potentially compute is vast. A major challenge
in understanding sensory systems is thus systems identification:
identifying which transformations the true biological circuits are
using. While identifying summaries of neural transfer functions (for
example, receptive field characterization) can be useful’, solving
this systems identification problem ultimately involves producing an
encoding model: an algorithm that accepts arbitrary stimulus inputs
(for example, any pixel map) and outputs a correct prediction of neural
responses to that stimulus. Models cannot be limited just to explaining
anarrow phenomenon identified on carefully chosen neurons, defined
only for highly controlled and simplified stimuli®®. Operating on arbi-
trary stimuli and quantitatively predicting the responses of all neurons
in an area are two core criteria that any model of a sensory area must
meet (see Box 1).

Moreover, a comprehensive encoding model must not merely
predict the stimulus-response relationship of neurons in one final
area, such as (in vision) anterior inferior temporal cortex. Instead,
the model must also be mappable: having identifiable components
corresponding to intermediate cortical areas (for example, V1, V2,
V4) and, ultimately, subcortical circuits as well. The model’s responses
in each component area should correctly predict neural response
patterns within the corresponding brain area (Fig. 1c).

Hierarchical convolutional neural networks

Starting with the seminal work of Hubel and Wiesel!, work in visual
systems neuroscience has shown that the brain generates invariant
object recognition behavior via a hierarchically organized series of
cortical areas, the ventral visual stream?. A number of workers have
built biologically inspired neural networks generalizing Hubel and
Wiesel’s ideas (for example, refs. 11-15). Over time, it was realized
that these models were examples of a more general class of computa-
tional architectures known as HCNNs!®. HCNNs are stacks of layers
containing simple neural circuit motifs repeated across the sensory
input; these layers are then composed in series. (Here, “layer” is used
in the neural network sense, not in the cortical anatomy sense.) Each
layer is simple, but a deep network composed of such layers com-
putes a complex transformation of the input data—analogous to the
transformation produced in the ventral stream.

The motifs in a single HCNN layer

The specific operations comprising a single HCNN layer were inspired
by the ubiquitously observed linear-nonlinear (LN) neural motif>.
These operations (Fig. 1¢) include (i) filtering, a linear operation that
takes the dot product of local patches in the input stimulus with a set
of templates, (ii) activation, a pointwise nonlinearity—typically either
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Figure 1 HCNNs as models of sensory
cortex. (a) The basic framework in which

sensory cortex is studied is one of encoding—the process by which stimuli are transformed
into patterns of neural activity—and decoding, the process by which neural activity generates

behavior. HCNNs have been used to make models of the encoding step; that is, they describe

the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade.
It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior;

RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(e), transformation. (c) HCNNs are multilayer neural
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy

decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning

that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear
aggregation operation—typically the mean or maximum of local
values!3, and (iv) divisive normalization, correcting output values to
a standard range!”. Not all HCNN incarnations use these operations
in this order, but most are reasonably similar. All the basic operations
exist within a single HCNN layer, which is then typically mapped to
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are
applied locally, over a fixed-size input zone that is typically smaller
than the full spatial extent of the input (Fig. 1c). For example, on a
256 x 256 pixel image, a layer’s receptive fields might be 7 x 7 pixels.

Box 1 Minimal criteria for a sensory encoding model

Because they are spatially overlapping, the filter and pooling operations
are typically ‘strided, meaning that output is retained for only a
fraction of positions along each spatial dimension: a stride of 2 in
image convolution will skip every second row and column.

In HCNNE, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial
locations. Since identical operations are applied everywhere, spatial
variation in the output arises entirely from spatial variation in the
input stimulus. It is unlikely the brain literally implements weight
sharing, since the physiology of the ventral stream and other sensory
cortices appears to rule out the existence of a single master location in

We identify three criteria that any encoding model of a sensory cortical system should meet:

Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;

Mappability: The components of the model should correspond to experimentally definable components of the neural system; and

Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each

mapped area.

These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli,

the utility of their lower-level verisimilitude is limited.
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Box 2 Mapping models to neural sensory systems
How does one map artificial neural networks to real neurons? Several approaches are possible, at varying levels of neural detail.

Task information consistency. At the coarsest level, a useful metric of model similarity to a system is the consistency of patterns of explicitly decoda-
ble information available to support potential behavioral tasks. In this approach, populations of ‘neurons’ from a model and populations of recorded
neurons are analyzed with identical decoding methods on a battery of high-level tasks (for example, object recognition, face identification and so forth).
While not required, it is useful to use simple decoders such as linear classifiers or linear regressors!:32:63.64 as these embody hypothetical downstream
decoding circuits®®:66, This procedure generates a pattern of response choices for both the model and the neural population. These patterns are then
compared to each other either at a coarse grain (for example, via accuracy levels for each task32) or a fine grain (stimulus-by-stimulus response consist-
ency). We note that this approach naturally connects to the linkage between neuronal populations and behavior32, as both models and neurons can be
compared to behavioral measurements from either in animal or humans subjects. Both the neural area thought be most directly connected to behavior
(for example, IT in the visual case) and the computational model of this area should exhibit high consistency with those behavioral patterns32.

Population representational similarity. Another population-level metric is representational similarity analysis29-3°, in which the two representations (that of the
real neurons and that of the model) are characterized by their pairwise stimulus correlation matrix (Fig. 2d). For a given set of stimuli, this matrix describes
how far apart a representation ‘thinks’ each pair of stimuli are. These distance matrices are then compared for similarity: the model is judged to be similar to
the neural representation if it treats stimuli pairs as close to (or far from) each other whenever the real neural population representation also does so.

Single-unit response predictivity. A finer grained mapping of models to neurons is that of linear neural response predictivity of single units33. This idea is
best understood via a simple thought experiment: imagine one had measurements from all neurons in a given brain area in two animals: a source animal
and a target animal. How would one map the neurons in the source to neurons in the target? In many brain areas (such as, for example, V4 or IT), there
might not be an exact one-to-one mapping of units between the animals. However, it is reasonable to suppose that the two animals’ areas are the same (or
very similar) up to linear transform—for example, that units in the target animal are approximately linear combinations of (a small number of) units in the

source animal. In engineering terms, the animals would be said to be ‘equivalent bases’ for sensory representation. (If the mapping had to be nonlinear,

it would call into question whether the two areas were the same across animals to begin with.) Making the mapping would, in effect, be the problem of
identifying the correct linear combinations. The same idea can be used to map units in a model layer to neurons in a brain area. Specifically, each empiri-
cally measured neuron is treated as the target of linear regression from units in the model layer. The goal is find linear combinations of model units that
together produce a ‘synthetic neuron’ that will reliably have the same response patterns as the original target real neuron: find ¢;,i € {1,...,n} such that

r(x) = synth(X) = ZC/m,(X)
i

where r(x) is the response of neuron rto stimulus x, and m(x) is the response of the /-th model unit (in some fixed model layer). Accuracy of rgiy is
then measured as its explained variance (R2) for r on new stimuli not used to identify the coefficients c;. Ideally, the number of model source units i
that have nonzero weights c; would be approximately the same as would be found empirically when attempting to map the neurons in one animal to

those in same brain area for a different animal.

which shared templates could be stored. However, the natural visual
(or auditory) statistics of the world are themselves largely shift invari-
ant in space (or time), so experience-based learning processes in the
brain should tend to cause weights at different spatial (or temporal)
locations to converge. Shared weights are therefore likely to be a rea-
sonable approximation to the brain’s visual system, at least within the
central visual field. The real visual system has a strong foveal bias, and
more realistic treatment of nonuniform receptive field density might
improve models’ fits to neural data.

Deep networks through stacking

Since convolutional layer outputs have the same spatial layout as their
inputs, output of one layer can be input to another. HCNNs can thus
be stacked into deep networks (Fig. 1c). Although the local fields seen
by units in a single layer have a fixed, small size, the effective recep-
tive field size relative to the original input increases with succeeding
layers. Because of repeated striding, deep HCNNs typically become
less retinotopic with each succeeding layer, consistent with empirical
observations?. However, the number of filter templates used in each
layer typically increases. Thus, the dimensionality changes through
the layers from wide and shallow to deep and narrow (Fig. 1c).
After many strided layers, the spatial component of the output is
so reduced that convolution is no longer meaningful, whereupon
networks are typically extended using one or more fully connected
layers. The last layer is usually used for readout: for example, for
each of several visual categories, the likelihood of the input image
containing an object of the given category might be represented by
one output unit.

HCNNs as a parameterized model family
HCNNS are not a single model, but rather a parameterized model
class. Any given HCNN is characterized by the following:

« discrete architectural parameters, including the number of layers
the network contains, as well as, for each layer, discrete parameters
specifying the number of filter templates; the local radius of each
filtering, pooling and normalization operation; the pooling type;
and potentially other choices required by the specific HCNN imple-
mentation; and

+ continuous filter parameters, specifying the filter weights of
convolutional and fully connected layers.

Though parameter choices might seem like mere details, subtle
parameter differences can dramatically affect a network’s perform-
ance on recognition tasks and its match to neural datal>18.

Given the minimal model criteria described in Box 1, a key goal is
identifying a single HCNN parameter setting whose layers correspond
to distinct regions within the cortical system of interest (for example,
different areas in the ventral stream) and which accurately predict
response patterns in those areas (see Box 2).

While an oversimplification, the relationship between modifying
filters and architectural parameters is somewhat analogous to that
between developmental and evolutionary variation. Filter param-
eters are thought of as corresponding to synaptic weights, and their
learning algorithms (see discussion of backpropagation below)
update parameters in an online fashion. Changing architectural
parameters, in contrast, restructures the computational primitives,
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the number of sensory areas (model layers) and the number of
neurons in each area.

Early models of visual cortex in context
A number of approaches have been taken to identify HCNN param-
eters that best match biological systems.

Hand-designing parameters via Hubel and Wiesel theory. Beginning
in the 1970s, before the HCNN concept was fully articulated, modelers
started tackling lower cortical areas such as V1, where neurons
might be explicable through comparatively shallow networks. Hubel
and Wiesel’s empirical observations suggested that neurons in V1
resemble Gabor wavelet filters, with different neurons corresponding
to edges of different frequencies and orientations!®1°. Indeed, early
computational models using hand-designed Gabor filter banks as
convolution weights achieved some success in explaining V1 neural
responses?’. Later it was realized that models could be substantially
improved using nonlinearities such as thresholding, normaliza-
tion and gain control>?!, helping motivate the HCNN class in the
first place. Similar ideas have been proposed for modeling primary
auditory cortex?2.

Learning parameters via efficient coding constraints. The work of
Barlow, Olshausen and others introduced another way of determining
filter parameters?>24, Filters were optimized to minimize the number
of units activated by any given stimulus while still retaining the abil-
ity to reconstruct the original input. Such ‘sparse’ efficient codings
naturally learn Gabor-wavelet-like filters from natural image data,
without having to build those patterns in by hand.

Fitting networks to neural data. Another natural approach begun
in the mid-1990s was to bring neuroscience data directly to bear on
model parameter choice. The idea was to collect response data to
various stimuli for neurons in a brain area of interest and then use
statistical fitting techniques to find model parameters that reproduce
the observed stimulus-response relationship. This strategy had some
success fitting shallow networks to visual area V1, auditory area Al
and somatosensory area S1 (reviewed in ref. 25).

Difficulties with deeper networks. Given successful shallow convo-
lutional models of early cortical areas, perhaps deeper models would
shed light on downstream sensory areas. However, the deeper models
needed to model such higher areas would have many more parameters
than V1-like models. How should these parameters be chosen?

The outputs on which higher layers operate are challenging to visu-
alize, making it difficult to generalize the hand-designed approach
to deeper networks. Similarly, while some progress has been made
in extending efficient coding beyond one layer?®, these approaches
also have not yielded effective deeper networks. Multi-layer HMAX
networks were created by choosing parameters roughly to match
known biological constraints!>13. HMAX networks had some success
reproducing high-level empirical observations, such as the tolerance
ranges of inferior temporal (IT) cortex neurons'>?7 and the tradeoff
between single-unit selectivity and tolerance?s.

However, by the mid-2000s, it had become clear that these
approaches were all having trouble extending to higher cortical areas
such as V4 and IT. For example, HMAX models failed to match pat-
terns of IT population activity on batteries of visual images??, while
multilayered neural networks fit to neural data in V4 and IT ended
up overfitting the training data and predicting comparatively small
amounts of explained variance on novel testing images®.

PERSPECTIVE

One plausible reason for this lack of success was that the largely
feedforward neural networks being explored were too limited to
capture the data efficiently. Perhaps more sophisticated network
architectures, using feedback3® or millisecond-scale spike timing?!,
would be required. A second possibility was that failure arose from
not having enough neural data to fit the model parameters. Single-
unit physiology approaches® or whole-brain functional MRI?® could
measure responses to perhaps 1,000 independent stimuli, while array
electrophysiology3? could obtain responses to ~10,000 stimuli.
In hindsight, the amount of neural data available to constrain such
networks was several orders of magnitude too little.

A new way forward: goal-driven networks as neural models

The goal-driven approach is inspired by the idea that, whatever param-
eters are used, a neural network will have to be effective at solving
the behavioral tasks the sensory system supports to be a correct model
of a given sensory system. The idea of this approach is to first optimize
network parameters for performance on an ethologically relevant
task, and then, once network parameters have been fixed, to compare
networks to neural data. This approach avoids the severe data limi-
tation of pure neural fitting, as collecting (for example) millions of
human-labeled images containing many hard real-world cases of
object recognition is far easier than obtaining comparable neural
data. The key question becomes: do such top-down goals strongly
constrain biological structure? Will performance optimization
imposed at the outputs of a network be sufficient to cause hidden
layers in the network to behave like real neurons in, for example,
V1, V4 or IT? A series of recent results has shown that this might
indeed be the case.

The technological bases of the goal-driven approach are recent
improvements in optimizing neural networks performance for arti-
ficial intelligence tasks. In this section, we discuss how these tools
have led to better neural models; in the next, we discuss the technical
innovations underlying those tools.

Top hidden layers of categorization-optimized HCNNs predict
IT neuronal responses. High-throughput computational experi-
ments evaluating thousands of HCNN models on task performance
and neural-predictivity metrics revealed a key correlation: archi-
tectures that perform better on high-level object recognition tasks
also better predict cortical spiking data33-3* (Fig. 2a). Pushing this
idea further by using recent advances from machine learning led to
the discovery of hierarchical neural network models that achieved
near-human-level performance level on challenging object categori-
zation tasks. It turned out that the top hidden layers of these models
were the first quantitatively accurate image-computable model of
spiking responses in IT cortex, the highest-level area in the ventral
hierarchy!®33:34 (Fig. 2b,c). Similar models have also been shown to
predict population aggregate responses in functional MRI data from
human IT (Fig. 2d)3>3.

These results are not trivially explained merely by any signal reflect-
ing object category identity being able to predict IT responses. In fact, at
the single neuron level, IT neural responses are largely not categorical,
and ideal-observer models with perfect access to category and iden-
tity information are far less accurate IT models than goal-driven
HCNNs33 (Fig. 2a,c). Being a true image-computable neural network
model appears critical for obtaining high levels of neural predictivity.
In other words: combining two general biological constraints—the
behavioral constraint of the object recognition task and the architec-
tural constraint imposed by the HCNN model class—leads to greatly
improved models of multiple layers of the visual sensory cascade.
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve

object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate
70-170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that
produces a specific HCNN model33. PLOSQ9, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each

test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.

(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates

low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct.
Values range from O to 1. (e) RDM similarity, measured with Kendall's 74, between HCNN model layer features and human V1-V3 (left) or human IT
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a—c adapted
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.

Though the top hidden layers of these goal-driven models end up  not to fit neural data, but instead the downstream behavioral goal
being predictive of IT cortex data, they were not explicitly tuned to  (for example, categorization). Model parameters were independently
do so; indeed, they were not exposed to neural data at all during the  selected to optimize categorization performance, and were compared
training procedure. Models thus succeeded in generalizing in two  with neural data only after all intermediate parameters—for example,
ways. First, the models were trained for category recognition using nonlinear model layers—had already been fixed.
real-world photographs of objects in one set of semantic catego- Stated another way, within the class of HCNNG, there appear to be
ries, but were tested against neurons on a completely distinct set of ~comparatively few qualitatively distinct, efficiently learnable solutions
synthetically created images containing objects whose semantic cat-  to high-variation object categorization tasks, and perhaps the brain is
egories were entirely non-overlapping with that used in training. forced over evolutionary and developmental timescales to pick such a
Second, the objective function being used to train the network was  solution. To test this hypothesis it would be useful to identify non-HCNN
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Box 3 The meaning of ‘understanding’ in a complex sensory system

What does it mean to understand a complex neural system67? In this Perspective, we have suggested that successful models are image-computable,
mappable and quantitatively predictive. But do models that meet these criteria necessarily represent understanding? It can be argued that deep

neural networks are black boxes that give limited conceptual insight into the neural systems they aim to explain. Indeed, the very fact that deep HCNNs
are able to predict the internal responses of a highly complex system performing a very nonlinear task suggests that, unlike earlier toy models, these
deeper models will be more difficult to analyze than earlier models. There may be a natural tradeoff between model correctness and understandability.

Optimal stimulus and perturbation analysis. However, one of the key advantages of an image-computable model is that it can be analyzed in detail at low

cost, making high-throughput ‘virtual electrophysiology’ possible. Recent techniques that optimize inputs either to match the statistics of target images
or to maximize activation of a single output unit have produced impressive results in texture generation, image style matching and optimal stimulus
synthesis (ref. 68 and Mordvintsev, A., Tyka, M. & Olah, C., http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html,
2015). These techniques could be used to identify the featural drivers of individual neurons, using the models’ efficiency of scale to reduce a huge
stimulus space to a set small enough to measure using realistic experimental procedures®®. Inspired by causal intervention experiments’9, predictions
for causal relationships between neural responses and behavior could be obtained by perturbing units within the model, even optimizing stimuli and

perturbation patterns to achieve the most effective behavioral changes.

A concrete example of traversing Marr’s levels of analysis. Goal-driven models yield higher level insight as well. That functional constraints can produce
neurally predictive models is reminiscent of earlier work, including efficient coding hypotheses23:24, In both approaches, a driving concept—expressed
as an objective function for optimization—explains why parameters are as they are. Unlike efficient coding, goal-driven HCNNs derive their objective
function from behaviors that organisms are known to perform, rather than more abstract concepts, such as sparsity, whose ecological relevance is
unclear. In this sense, the current work is more similar in spirit to Marr’s levels of analysis’?, investigating how a system’s computational-level goals
influence its algorithmic and implementation level mechanisms. This approach is also related to neuroethology, where the natural behavior of an

organism is studied to gain insight into underlying neural mechanisms’2,

models that, when optimized for categorization, achieved high
performance. The hypothesis predicts that any such models would
fail to predict neural response data.

Intermediate and lower layers predict V4 and V1 responses

In addition to higher model layers mapping to IT, intermediate layers
of these same HCNN models turn out to be state-of-the-art predictors
of neural responses in V4 cortex, an intermediate visual area that is the
main cortical input to I'T33 (Fig. 2¢). While the fit to IT cortex peaks
in the highest hidden model layers, the fit to V4 peaks in the middle
layers. In fact, these ‘accidental’ V4-like layers are significantly more
predictive of V4 responses than models built from classical intuitions
of what the area might be doing (for example, edge conjunction or
curvature representation’”). Continuing this trend, the lowest layers of
goal-driven HCNN models naturally contain a Gabor-wavelet-like acti-
vation pattern. Moreover, these lower layers provide effective models
of voxel responses in V1-V3 voxel data (Fig. 2e)3>3¢. Top-down con-
straints are thus able to reach all the way down the ventral hierarchy.

Box 4 Gradient backpropagation

The basic idea of the gradient backpropagation algorithm is simple:

A common assumption in visual neuroscience is that understanding
tuning curves in lower cortical areas (for example, edge conjunctions
in V2 (ref. 38) or curvature in V4 (ref. 39)) is a necessary precur-
sor to explaining higher visual areas. Results with goal-driven deep
HCNNs show that top-down constraints can yield quantitatively
accurate models of intermediate areas even when descriptive bottom-
up primitives have not been identified (see Box 3).

HCNN layers as generative models of cortical areas. Unlike previ-
ous modeling approaches that fit single nonlinear models for each
empirically measured neuron and then describe the distributions of
parameters that were found®, the performance-based approach gen-
erates a single model for all neurons simultaneously. Consequently,
layers of the deep HCNNSs are generative models for correspond-
ing cortical areas, from which large numbers of (for example)
IT-, V4- or V1-like units can be sampled. Given that the neurons
used to evaluate model correctness were chosen by random electrode
sampling, it is likely that any future neurons sampled from the same

1. Formulate the task of interest as a loss function to be minimized—for example, categorization error. The loss function should be piecewise
differentiable with respect to both the inputs (for example, images) and the model parameters.

2. Initialize the model parameters either at random or through some well-informed initial guess!4.

3. For each input training sample, compute the derivative of the error function with respect to the filter parameters, and sum these values over

the input data.

4. Update network parameters by gradient descent—that is, by moving each parameter a small amount in the direction opposite to the error gradient

for that parameter.

5. Repeat steps 3 and 4 until either the training error converges or, if overfitting is a concern, some ‘early stopping’ criterion is met14.

The key insight that makes this procedure relatively efficient for feedforward networks is that—simply by applying the chain rule from basic
calculus—the derivatives of the error with respect to filter values in a given layer can be efficiently computed from those in the layer just above?2.
Derivative computations thus start at the top layer and then propagate backwards through the network down to the first layers.

Another important technical innovation enabling large-scale backpropagation was stochastic gradient descent (SGD)42. SGD involves breaking
training data into small, randomly chosen batches. Gradient descent is done on each batch in sequence until the training data are exhausted,

at which point the procedure can begin again, usually on newly chosen random batches. SGD enables backpropagation on much larger data sets
than previously contemplated and usually converges to a stable solution, though the statistical theory guaranteeing such convergence is not

well developed.
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Figure 3 The components of goal-driven modeling. The large circle
represents an architectural model class; each point in the space is a full
model (examples at right); inner circles represent subspaces of the full
model class containing models of a given number of layers. Goal-driven
models are built by using learning algorithms (dotted black arrows) that
drive systems along trajectories in the model class (solid colored lines)
to discover especially optimal models. Each goal can be thought of as
corresponding to a basin of attraction within the model class (thick black
contours) containing parameters that are especially good for solving that
goal. Computational results have shown that tasks put a strong constraint
on model parameter settings, meaning that the set of optimal parameters
for any given task is very small compared to the original space. These
goal-driven models can then be evaluated for how predictive they are

of the response properties of neurons in brain areas that are thought to
underlie behavior in a given task domain. For example, the units of a
model optimized for word recognition could be compared to response
properties in the primary, belt and parabelt regions of auditory cortex40.
Models can also be compared to each other to determine to what

extent different types of tasks lead to shared neural structures. Various
component rules (supervised, unsupervised or semi-supervised) can also
be studied to determine how they might lead to different dynamics during
postnatal development or expertise learning (dashed green paths).

areas will be equally well predicted, without having to update model
parameters or train any new nonlinear functions.

Application to auditory cortex. A natural idea is to apply goal-based
HCNN modeling to sensory domains that are less well understood
than vision. The most obvious candidate for this is audition, where
a clear path forward involves producing HCNN models whose
top layers are optimized to solve auditory tasks such as speech
recognition, speaker identification, natural sound identification
and so on. An intriguing possibility is that intermediate layers
of such models may reveal previously unknown structures in non-
primary auditory cortex. Initial results suggest that this approach
holds promise.

Factors leading to the improvement of HCNNs

Taking initial inspiration from neuroscience, HCNNs have become a
core tool in machine learning. HCNNs have been successful on many
tasks, including image categorization, face identification, localization,
action recognition, depth estimation and a variety of other visual
tasks*!. Related recurrent versions of deep neural networks have been
used to make strides in speech recognition. Here we discuss some of
the technical advances that have led to this recent progress.

Hardware-accelerated stochastic error backpropagation for
optimizing filter parameters

In supervised learning of a task (for example, car detection in images),
one chooses a set of training data, containing both sample inputs (for
example. images of cars and non-cars) and labels describing desired
results for each input (for example, image category labels, such as “car”
or “dog”). Learning algorithms are then used to optimize the parame-
ter settings of the network so that output layers yield the desired labels
on the training data!4. A powerful algorithm for supervised learn-
ing of filter parameters from supervised data has been in existence
for several decades: error gradient descent by backpropagation!442
(see Box 4). However, until recently, backpropagation has been com-
putationally impractical at large scales on massive data sets. The recent
advent of graphical processing unit (GPU)-accelerated programming
has been a great boon because backpropagation computations largely
involve either simple pointwise operations or parallel matrix dot-prod-
ucts!>3343, GPUs, which are more neuromorphic than von Neumann
CPU architectures, are especially well suited to these operations,

Model architecture class

Localization

N

Differing
learning
dynamics

routinely yielding speed increases of tenfold or more!>. Further
advances in neuromorphic computing could accelerate this trend*4.

Automated learning procedures for architectural parameters
Discrete architectural parameters (for example, number of layers)
cannot easily be optimized by error backpropagation. However,
discrete parameters are critical to final network performance!>18.
Traditionally, these parameters had been chosen by hand, empiri-
cally testing various combinations one at a time until improvements
were observed. More recently, procedures such as Gaussian process
optimization and genetic algorithms have been deployed to learn
better architectural parameters automatically!>4>46,

Large web-enabled labeled data sets

Another important factor in recent advances is the advent of large
labeled data sets. In the visual domain, early data sets often consisted
of hundreds of images in hundreds of categories?”. It was eventu-
ally realized that such data sets were neither large nor varied enough
to provide sufficient training data to constrain the computational
architecture!>48. A major advance was the release of the ImageNet
data set, which contains tens of millions of images in thousands of
categories, curated from the Internet by crowd-sourcing®. Taking
advantage of these large data sets required the efficient hardware-
accelerated algorithms described above. Once these were in place,
much deeper neural networks could be trained. A rough rule of thumb
is that the number of training samples for backpropagation should be
10 times the number of network parameters. Given that the number of
parameters in a modern deep network far exceeds 100,000, the need
for millions of training samples becomes evident, at least for current
parameter learning strategies. (The neural learning algorithms used
by the brain are probably significantly more efficient with labeled data
than current computational methods for training HCNNs, and may
not be subject to the ‘10x” heuristic.)

A concomitance of small tweaks to architecture class and
training methods

A number of other small changes in neural network architecture
and training helped improve performance. One especially relevant
modification replaced continuously differentiable sigmoid activation
functions with half-rectified thresholds*3. Because these activation
functions have constant or zero derivative almost everywhere, they
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An intriguing recent development in the exploration of HCNNs is the discovery of adversarial images: normal photographs that are subtly modified in
ways that are undetectable to humans but that cause networks to incorrectly detect arbitrary objects in the modified image’3.74. In effect, adversarial
images demonstrate that existing HCNNs may be susceptible to qualitatively different types of illusions than those that fool humans. These images are
created through adversarial optimization, a process in which the pixels of the original image are optimally modified so as to produce the largest changes
in the network’s final category-detection layer, but with the least disturbance at the pixel level. Creating such images, which may not naturally arise in
the physical world, requires complete access to the network’s internal parameters.

Thinking along the lines of three components of goal-driven modeling discussed above (and see Fig. 3), several possibilities for explaining adversarial
examples include (i) that similar effects would be replicable in humans—for example, the creation of idiosyncratic images that fool one human but

are correctly perceived by others—if experiments had access to the detailed microcircuitry of that individual brain and could run an adversarial
optimization algorithm on it; (ii) that optimization for a categorization goal is brittle, but if richer and more robust optimization goal(s) were used, the
effects would disappear; or (iii) that adversarial examples expose a fundamental architectural flaw in HCNNs as brain models, and only by incorporating
other network structures (for example, recurrence) will the adversarial examples be overcome. Regardless of which (if any) if these is most correct,
understanding adversarial optimization effects would seem to be a critical component of better understanding HCNNs themselves, especially as

putative models of the brain.

suffer less from the so-called vanishing-gradients problem, in which
error gradients in early layers become too small to optimize effectively.
A second type of improvement was the introduction of regularization
methods that inject noise during backpropagation into the network to
prevent the learning of fragile, overfit weight patterns®3.

The unreasonable effectiveness of engineering

Recent improvements represent the accretion of a number of critical
engineering improvements (for example, refs. 50,51). These changes
may not signal major conceptual breakthroughs beyond the original
HCNN and backpropagation concepts described decades ago, but
they nonetheless led to enormous improvement in final results. Large
data sets and careful engineering have been much more important
than was originally anticipated®2.

Going forward: potentials and limitations
Goal-driven deep neural network models are built from three basic
components (Fig. 3):

+ a model architecture class from which the system is built, formal-
izing knowledge about the brain’s anatomical and functional
connectivity;

+ a behavioral goal that the system must accomplish, such as object
categorization; and

+ alearning rule that optimizes parameters within the model class to
achieve the behavioral goal.

The results above demonstrate how these three components can be
assembled to make detailed computational models that yield test-
able predictions about neural data, significantly surpassing prior
sensory cortical models. Future progress will mean, in part, better
understanding each of these three components—as well as their
limitations (see Box 5).

Improving architecture class

Continued success in using computational models to understand sen-
sory cortex will involve more detailed and explicit mapping between
model layers and cortical areas. HCNN operations such as template
matching and pooling are neurally plausible, but understanding
whether and how the parameterizations used in HCNNs actually con-
nect to real cortical microcircuits is far from obvious. Similarly, while
the hierarchy of HCNN model layers appears to generally correspond
with the overall order of observed ventral cortical areas, whether the
model-layer/brain-area match is one-to-one (or close to it) is far
from fully understood. Recent high-performing computer vision

networks have greatly increased the number of layers, sometimes to
20 or more>’. Evaluating whether these very deep networks are better
explanations of neural data will be of importance, as deviations from
neural fit would suggest that the architectural choices are different
from those in the brain. More generally, one can ask, within the class
of HCNNs, which architectures, when optimized for categorization
performance, best fit the ventral steam neural response data? The
results above argue that this could be a new way to infer the architec-
tures in the adult ventral stream.

Such top-down, performance-driven approaches should of
course be coupled with state-of-the-art experimental techniques
such as two-photon microscopy, optogenetics, electron microscopy
reconstruction and other tracing techniques that aim to narrow the
class of architectures more directly. Better empirical understanding
at the neural circuit level could allow a narrowing in the class of
biologically relevant HCNNS, ruling out certain architectures or
making informed initial guesses about filter parameters. Models
would then need to learn fewer parameters to achieve equal or better
neural predictivity.

In both vision and audition, model architecture class could also be
improved by building more biologically realistic sensor front-ends into
early layers, using known results about subcortical structures®. At the
opposite end of the scale spectrum, there are large-scale spatial inho-
mogeneities in higher cortical areas (for example, face patches)*. In the
lower layers of HCNNS, there is an obvious mapping onto the cortical
surface via retinotopic maps, but this relationship is less clear in higher
layers. Understanding how multidimensional deep network output
may map to two-dimensional cortical sheets, and the implications of
this for functional organization, are important open problems.

Improving goal and training-set understanding

The choice of goal and training set has significantly influenced model
development, with high-variation data sets exposing the true hetero-
geneity within real-world categories33484% Tt seems likely that this
data-driven trend will continue®2. A key recent result is that HCNNs
trained for one task (for example, ImageNet classification) general-
ize to many other visual tasks quite different from the one on which
they were originally trained*!. If many relevant tasks come along ‘for
free’ with categorization, which tasks do not? An especially important
open challenge is finding tasks that are not solved by categorization
optimization but rather require direct independent optimization, and
then testing models optimized for these tasks to see if they better
explain ventral stream neural data. Developing rich new labeled data
sets will be critical to this goal. Understanding how HCNNs systems
for various sensory tasks relate to each other, in terms of shared or
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divergent architectures, would be of interest, both within a sensory
domain®*, as well as across domains (for example, between vision and
audition; see Fig. 3).

Improving learning rule understanding

While it is valuable that supervised learning creates working models
that are a remarkably good fit to real perceptual systems, it is physi-
ologically unlikely that cortex is implementing exact backpropagation.
A core inconsistency between current deep-learning approaches and
real biological learning is that training effective HCNNSs requires very
large numbers of high-level semantic labels. True biological postnatal
learning in humans, higher primates and other animals may use
large amounts of unsupervised data, but is unlikely to require
such large amounts of externally labeled supervision. Discovering
a biologically realistic unsupervised or semi-supervised learning
algorithm®>->7 that could produce high levels of performance
and neural predictivity would be of interest, from both artificial
intelligence and neuroscience viewpoints.

Beyond sensory systems and feedforward networks

Largely feedforward HCNNs cannot provide a full account of dynamics
in brain systems that store extensible state, including any that involve
working memory, since the dynamics of a feedforward network will
converge to the same state independent of input history. However,
there is a growing body of literature connecting recurrent neural
networks to neural phenomena in attention, decision making and
motor program generation8. Models that combine rich sensory input
systems, as modeled by deep neural networks, with these recurrent
networks could provide a fruitful avenue for exploring more sophis-
ticated cognitive behaviors beyond simple categorization or binary
decision making, breaking out of the pure ‘representation’ framework
in which sensory models are often cast. This is especially interesting
for cases in which there is a complex loop between behavioral out-
put and input stimulus—for example, when modeling exploration of
an agent over long time scales in a complex sensory environment®.
Intriguing recent results from reinforcement learning® have shown
how powerful in solving strategy-learning problems deep neural net-
work techniques may be. Mapping these to ideas in the neuroscience
of the interface between ventral visual cortex and, for example, parietal
cortex or the hippocampus will be of great interest®1:62,

Conclusion

In sum, deep hierarchical neural networks are beginning to transform
neuroscientists’ ability to produce quantitatively accurate computational
models of the sensory systems, especially in higher cortical areas
where neural response properties had previously been enigmatic.
Such models have already achieved several notable results, explaining
multiple lines of neuroscience data in both humans and monkeys33-36.
However, like any scientific advance of importance, these ideas open
up as many new questions as they answer. There is much exciting and
challenging work to be done, requiring the continued rich interaction
between neuroscience, computer science and cognitive science.
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