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Cognitive computational neuroscience

Nikolaus Kriegeskorte™ and Pamela K. Douglas?

To learn how cognition is implemented in the brain, we must build computational models that can perform cognitive tasks, and
test such models with brain and behavioral experiments. Cognitive science has developed computational models that decom-
pose cognition into functional components. Computational neuroscience has modeled how interacting neurons can implement
elementary components of cognition. It is time to assemble the pieces of the puzzle of brain computation and to better integrate
these separate disciplines. Modern technologies enable us to measure and manipulate brain activity in unprecedentedly rich
ways in animals and humans. However, experiments will yield theoretical insight only when employed to test brain-computa-
tional models. Here we review recent work in the intersection of cognitive science, computational neuroscience and artificial
intelligence. Computational models that mimic brain information processing during perceptual, cognitive and control tasks are

beginning to be developed and tested with brain and behavioral data.

build computational models that are capable of performing

cognitive tasks. The argument in favor of task-performing
computational models was well articulated by Allen Newell in 1973
in his commentary “You can’t play 20 questions with nature and
win”'. Newell was criticizing the state of cognitive psychology. The
field was in the habit of testing one hypothesis about cognition at
a time, in the hope that forcing nature to answer a series of binary
questions would eventually reveal the brain’s algorithms. Newell
argued that testing verbally defined hypotheses about cognition
might never lead to a computational understanding. Hypothesis
testing, in his view, needed to be complemented by the construction
of comprehensive task-performing computational models. Only
synthesis in a computer simulation can reveal what the interac-
tion of the proposed component mechanisms actually entails and
whether it can account for the cognitive function in question. If we
did have a full understanding of an information-processing mecha-
nism, then we should be able to engineer it. “What I cannot create,
I do not understand,” in the words of physicist Richard Feynman,
who left this sentence on his blackboard when he died in 1988.

Here we argue that task-performing computational models
that explain how cognition arises from neurobiologically plausible
dynamic components will be central to a new cognitive computa-
tional neuroscience. We first briefly trace the steps of the cognitive
and brain sciences and then review several exciting recent develop-
ments that suggest that it might be possible to meet the combined
ambitions of cognitive science (to explain how humans learn and
think)? and computational neuroscience (to explain how brains
adapt and compute)’ using neurobiologically plausible artificial
intelligence (AI) models.

In the spirit of Newell’s critique, the transition from cognitive
psychology to cognitive science was defined by the introduction of
task-performing computational models. Cognitive scientists knew
that understanding cognition required Al and brought engineering
to cognitive studies. In the 1980s, cognitive science made impor-
tant advances with symbolic cognitive architectures*® and neural
networks®, using human behavioral data to adjudicate between
candidate computational models. However, computer hardware
and machine learning were not sufficiently advanced to simulate
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cognitive processes in their full complexity. Moreover, these early
developments relied on behavioral data alone and did not leverage
constraints provided by the anatomy and activity of the brain.

With the advent of human functional brain imaging, scientists
began to relate cognitive theories to the human brain. This endeavor
came to be called cognitive neuroscience’. Cognitive neuroscien-
tists began by mapping cognitive psychology’s boxes (information-
processing modules) and arrows (interactions between modules)
onto the brain. This was a step forward in terms of engaging brain
activity, but a step back in terms of computational rigor. Methods
for testing the task-performing computational models of cogni-
tive science with brain-activity data had not been conceived. As
a result, cognitive science and cognitive neuroscience parted ways
in the 1990s.

Cognitive psychology’s tasks and theories of high-level func-
tional modules provided a reasonable starting point for mapping
the coarse-scale organization of the human brain with functional
imaging techniques, including electroencephalography, positron
emission tomography and early functional magnetic resonance
imaging (fMRI), which had low spatial resolution. Inspired by cog-
nitive psychology’s notion of the module®, cognitive neuroscience
developed its own game of 20 questions with nature. A given study
would ask whether a particular cognitive module could be found
in the brain. The field mapped an ever increasing array of cogni-
tive functions to brain regions, providing a useful rough draft of the
global functional layout of the human brain.

A brain map, at whatever scale, does not reveal the computa-
tional mechanism (Fig. 1). However, mapping does provide con-
straints for theory. After all, information exchange incurs costs
that scale with the distance between the communicating regions—
costs in terms of physical connections, energy and signal latency.
Component placement is likely to reflect these costs. We expect
regions that need to interact at high bandwidth and short latency
to be placed close together’. More generally, the topology and
geometry of a biological neural network constrain its dynam-
ics, and thus its functional mechanism. Functional localization
results, especially in combination with anatomical connectivity,
may therefore ultimately prove useful for modeling brain infor-
mation processing.
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Fig. 1| Modern imaging techniques provide unprecedentedly detailed information about brain activity, but data-driven analyses support only limited
insights. a, Two-photon calcium imaging results'?' show single-neuron activity for a large population of cells measured simultaneously in larval zebrafish
while the animals interact with a virtual environment. b, Human fMRI results’® reveal a detailed map of semantically selective responses while a subject
listened to a story. These studies illustrate, on the one hand, the power of modern brain-activity measurement techniques at different scales (a,b) and,
on the other, the challenge of drawing insights about brain computation from such datasets. Both studies measured brain activity during complex, time-
continuous, naturalistic experience and used principal component analysis (a, bottom; b, top) to provide an overall view of the activity patterns and their

representational significance. PC, principal component.

Despite methodological challenges'®', many of the findings
of cognitive neuroscience provide a solid basis on which to build.
For example, the findings of face-selective regions in the human
ventral stream'” have been thoroughly replicated and generalized.
Nonhuman primates probed with fMRI exhibit similar face-selec-
tive regions, which had evaded explorations with invasive electrodes
because the latter do not provide continuous images over large fields
of view. Localized with fMRI and probed with invasive electrode
recordings, the primate face patches revealed high densities of face-
selective neurons”, with invariances emerging at higher stages of
hierarchical processing, including mirror-symmetric tuning and
view-tolerant representations of individual faces in the anterior-
most patch'’. The example of face perception illustrates, on one
hand, the solid progress in mapping the anatomical substrate and
characterizing neuronal responses'” and, on the other, the lack of
definitive computational models. The literature does provide clues
to the computational mechanism. A brain-computational model of
face recognition'® will have to explain the spatial clusters of face-
selective units and the selectivities and invariances observed with
fMRI'”* and invasive recordings'*".

Cognitive neuroscience has mapped the global functional layout
of the human and nonhuman primate brain®. However, it has not
achieved a full computational account of brain information process-
ing. The challenge ahead is to build computational models of brain
information processing that are consistent with brain structure and
function and perform complex cognitive tasks. The following recent
developments in cognitive science, computational neuroscience and
artificial intelligence suggest that this may be achievable.

1. Cognitive science has proceeded from the top down, decom-
posing complex cognitive processes into their computational com-
ponents. Unencumbered by the need to make sense of brain data, it
has developed task-performing computational models at the cogni-
tive level. One success story is that of Bayesian cognitive models,
which optimally combine prior knowledge about the world with
sensory evidence?'~*. Initially applied to basic sensory and motor
processes””, Bayesian models have begun to engage complex
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cognition, including the way our minds model the physical and
social world*. These developments occurred in interaction with
statistics and machine learning, where a unified perspective on
probabilistic empirical inference has emerged. This literature pro-
vides essential computational theory for understanding the brain.
In addition, it provides algorithms for approximate inference on
generative models that can grow in complexity with the available
data—as might be required for real-world intelligence®*.

2. Computational neuroscience has taken a bottom-up approach,
demonstrating how dynamic interactions between biological neu-
rons can implement computational component functions. In the past
two decades, the field developed mathematical models of elementary
computational components and their implementation with biologi-
cal neurons”**. These include components for sensory coding®-,
normalization®, working memory®, evidence accumulation and
decision mechanisms™~*, and motor control®. Most of these com-
ponent functions are computationally simple, but they provide
building blocks for cognition. Computational neuroscience has also
begun to test complex computational models that can explain high-
level sensory and cognitive brain representations”*.

3. Artificial intelligence has shown how component functions
can be combined to create intelligent behavior. Early Al failed to
live up to its promise because the rich world knowledge required
for feats of intelligence could not be either engineered or automat-
ically learned. Recent advances in machine learning, boosted by
growing computational power and larger datasets from which to
learn, have brought progress at perceptual®, cognitive* and con-
trol challenges*. Many advances were driven by cognitive-level
symbolic models. Some of the most important recent advances are
driven by deep neural network models, composed of units that
compute linear combinations of their inputs, followed by static
nonlinearities*”. These models employ only a small subset of the
dynamic capabilities of biological neurons, abstracting from fun-
damental features such as action potentials. However, their func-
tionality is inspired by brains and could be implemented with
biological neurons.
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The three disciplines contribute complementary elements to
biologically plausible computational models that perform cognitive
tasks and explain brain information processing and behavior (Fig. 2).
Here we review the first steps in the literature toward a cognitive
computational neuroscience that meets the combined criteria for
success of cognitive science (computational models that perform
cognitive tasks and explain behavior) and computational neurosci-
ence (neurobiologically plausible mechanistic models that explain
brain activity). If computational models are to explain animal and
human cognition, they will have to perform feats of intelligence. A,
and in particular machine learning, is therefore a key discipline that
provides the theoretical and technological foundation for cognitive
computational neuroscience.

The overarching challenge is to build solid bridges between
theory (instantiated in task-performing computational models)
and experiment (providing brain and behavioral data). The first
part of this review describes bottom-up developments that begin
with experimental data and attempt to build bridges from the data
in the direction of theory”. Given brain-activity data, connectiv-
ity models aim to reveal the large-scale dynamics of brain acti-
vation; decoding and encoding models aim to reveal the content
and format of brain representations. The models employed in this
literature provide constraints for computational theory, but they
do not in general perform the cognitive tasks in question and thus
fall short of explaining the computational mechanism underlying
task performance.

The second part of this article describes developments that
proceed in the opposite direction, building bridges from theory to
experiment’***. We review emerging work that has begun to test
task-performing computational models with brain and behavioral
data. The models include cognitive models, specified at an abstract
computational level, whose implementation in biological brains
has yet to be explained, and neural network models, which abstract
from many features of neurobiology, but could plausibly be imple-
mented with biological neurons. This emerging literature suggests
the beginnings of an integrative approach to understanding brain
computation, where models are required to perform cognitive tasks,
biology provides the admissible component functions, and the com-
putational mechanisms are optimized to explain detailed patterns of
brain activity and behavior.

From experiment toward theory

Models of connectivity and dynamics. One path from measured
brain activity toward a computational understanding is to model
the brain’s connectivity and dynamics. Connectivity models go
beyond the localization of activated regions and characterize the
interactions between regions. Neuronal dynamics can be mea-
sured and modeled at multiple scales, from local sets of interact-
ing neurons to whole-brain activity”. A first approximation of
brain dynamics is provided by the correlation matrix among the
measured response time series, which characterizes the pairwise
‘functional connectivity’ between locations. The literature on rest-
ing-state networks has explored this approach*, and linear decom-
positions of the space-time matrix, such as spatial independent
component analysis, similarly capture simultaneous correlations
between locations across time*.

By thresholding the correlation matrix, the set of regions can
be converted into an undirected graph and studied with graph-
theoretic methods. Such analyses can reveal ‘communities’ (sets
of strongly interconnected regions), ‘hubs’ (regions connected to
many others) and ‘rich clubs’ (communities of hubs)*. Connectivity
graphs can be derived from either anatomical or functional mea-
surements. The anatomical connectivity matrix typically resembles
the functional connectivity matrix because regions interact through
anatomical pathways. However, the way anatomical connectivity
generates functional connectivity is better modeled by taking local
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Fig. 2 | What does it mean to understand how the brain works? The goal
of cognitive computational neuroscience is to explain rich measurements
of neuronal activity and behavior in animals and humans by means of
biologically plausible computational models that perform real-world
cognitive tasks. Historically, each of the disciplines (circles) has tackled

a subset of these challenges (white labels). Cognitive computational
neuroscience strives to meet all the challenges simultaneously.

dynamics, delays, indirect interactions and noise into account®.
From local neuronal interactions to large-scale spatiotemporal pat-
terns spanning cortex and subcortical regions, generative models
of spontaneous dynamics can be evaluated with brain-activity data.

Effective connectivity analyses take a more hypothesis-driven
approach, characterizing the interactions among a small set of
regions on the basis of generative models of the dynamics™. Whereas
activation mapping maps the boxes of cognitive psychology onto
brain regions, effective connectivity analyses map the arrows onto
pairs of brain regions. Most work in this area has focused on char-
acterizing interactions at the level of the overall activation of a brain
region. Like the classical brain mapping approach, these analyses
are based on regional-mean activation, measuring correlated fluc-
tuations of overall regional activation rather than the information
exchanged between regions.

Analyses of effective connectivity and large-scale brain dynam-
ics go beyond generic statistical models such as the linear models
used in activation and information-based brain mapping in that
they are generative models: they can generate data at the level of the
measurements and are models of brain dynamics. However, they
do not capture the represented information and how it is processed
in the brain.

Decoding models. Another path toward understanding the brain’s
computational mechanisms is to reveal what information is present
in each brain region. Decoding can help us go beyond the notion
of activation, which indicates the involvement of a region in a task,
and reveal the information present in a region’s population activ-
ity. When particular content is decodable from activity in a brain
region, this indicates the presence of the information. To refer to the
brain region as ‘representing’ the content adds a functional inter-
pretation": that the information serves the purpose of informing
regions receiving these signals about the content. Ultimately, this
interpretation needs to be substantiated by further analyses of how
the information affects other regions and behavior*>->*.

Decoding has its roots in the neuronal-recording literature*” and
has become a popular tool for studying the content of representa-
tions in neuroimaging®~>’. In the simplest case, decoding reveals
which of two stimuli gave rise to a measured response pattern.

NATURE NEUROSCIENCE | VOL 21| SEPTEMBER 2018 | 1148-1160 | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

NATURE NEUROSCIENCE

Box 1| The many meanings of “model”

The word “model” has many meanings in the brain and behavio-
ral sciences. Data-analysis models are generic statistical models
that help establish relationships between measured variables.
Examples include linear correlation, univariate multiple lin-
ear regression for brain mapping, and linear decoding analysis.
Effective connectivity and causal-interaction models are, simi-
larly, data-analysis models. They help us infer causal influences
and interactions between brain regions. Data-analysis models
can serve the purpose of testing hypotheses about relationships
among variables (for example, correlation, information, causal
influence). They are not models of brain information process-
ing. A box-and-arrow model, by contrast, is an information-
processing model in the form of labeled boxes that represent
cognitive component functions and arrows that represent in-
formation flow. In cognitive psychology, such models provided
useful, albeit ill-defined, sketches for theories of brain compu-
tation. A word model, similarly, is a sketch for a theory about
brain information processing that is defined vaguely by a verbal
description. While these are models of information processing,
they do not perform the information processing thought to oc-
cur in the brain. An oracle model is a model of brain responses
(often instantiated in a data-analysis model) that relies on infor-
mation not available to the animal whose brain is being mod-
eled. For example, a model of ventral temporal visual responses
as a function of an abstract shape description, or as a function
of category labels or continuous semantic features, constitutes
an oracle model if the model is not capable of computing the
shape, category or semantic features from images. An oracle
model may provide a useful characterization of the informa-
tion present in a region and its representational format, without
specifying any theory as to how the representation is computed
by the brain. A brain-computational model (BCM), by contrast,
is a model that mimics the brain information processing un-
derlying the performance of some task at some level of abstrac-
tion. In visual neuroscience, for example, an image-computable

The content of the representation can be the identity of a sensory
stimulus (to be recognized among a set of alternative stimuli), a
stimulus property (such as the orientation of a grating), an abstract
variable needed for a cognitive operation, or an action®. When the
decoder is linear, as is usually the case, the decodable information

REVIEW ARTICLE

model is a BCM of visual processing that takes image bitmaps as
inputs and predicts brain activity and/or behavioral responses.
Deep neural nets provide image-computable models of visual
processing. However, deep neural nets trained by supervision
rely on category-labeled images for training. Because labeled
examples are not available (in comparable quantities) during
biological development and learning, these models are BCMs
of visual processing, but they are not BCMs of development
and learning. Reinforcement learning models use environmental
feedback that is more realistic in quality and can provide BCMs
of learning processes. A sensory encoding model is a BCM of
the computations that transform sensory input to some stage
of internal representation. An internal-transformation model is
a BCM of the transformation of representations between two
stages of processing. A behavioral decoding model is a BCM of
the transformation from some internal representation to a be-
havioral output. Note that the label BCM indicates merely that
the model is intended to capture brain computations at some
level of abstraction. A BCM may abstract from biological detail
to an arbitrary degree, but must predict some aspect of brain
activity and/or behavior. Psychophysical models that predict be-
havioral outputs from sensory input and cognitive models that
perform cognitive tasks are BCMs formulated at a high level of
description. The label BCM does not imply that the model is
either plausible or consistent with empirical data. Progress is
made by rejecting candidate BCMs on empirical grounds. Like
microscale biophysical models, which capture biological pro-
cesses that underlie brain computations, and macroscale brain-
dynamical and causal-interaction models, BCMs are models of
processes occurring in the brain. However, unlike the other
types of process model, BCMs perform the information pro-
cessing that is thought to be the function of brain dynamics.
Finally, the term “model” is used to refer to models of the world
employed by the brain, as in model-based reinforcement learning
and model-based cognition.

Three types of representational model analysis have been intro-
duced in the literature: encoding models*=*°, pattern component
models® and representational similarity analysis®"*. These three
methods all test hypotheses about the representational space, which
are based on multivariate descriptions of the experimental condi-

is in a format that can plausibly be read out by downstream neu-
rons in a single step. Such information is said to be ‘explicit’ in the
activity patterns®’.

Decoding and other types of multivariate pattern analysis have
helped reveal the content of regional representations™****, pro-
viding evidence that brain-computational models must incorpo-
rate. However, the ability to decode particular information does
not amount to a full account of the neuronal code: it doesn’t
specify the representational format (beyond linear decodability)
or what other information might additionally be present. Most
importantly, decoders do not in general constitute models of brain
computation. They reveal aspects of the product, but not the pro-
cess of brain computation.

tions—for example, a semantic description of a set of stimuli, or
the activity patterns across a layer of a neural network model that
processes the stimuli*.

In encoding models, each voxel’s activity profile across stimuli
is predicted as a linear combination of the features of the model.
In pattern component models, the distribution of the activity
profiles that characterizes the representational space is modeled
as a multivariate normal distribution. In representational simi-
larity analysis, the representational space is characterized by the
representational dissimilarities of the activity patterns elicited by
the stimuli.

Representational models are often defined on the basis of
descriptions of the stimuli, such as labels provided by human
observers®>*7", In this scenario, a representational model that
explains the brain responses in a given region provides, not a brain-
computational account, but at least a descriptive account of the rep-
resentation. Such an account can be a useful stepping-stone toward
computational theory when the model generalizes to novel stimuli.
Importantly, representational models also enable us to adjudicate
among brain-computational models, an approach we will return to
in the next section.

Representational models. Beyond decoding, we would like to
exhaustively characterize a region’s representation, explaining its
responses to arbitrary stimuli. A full characterization would also
define to what extent any variable can be decoded. Representational
models attempt to make comprehensive predictions about the rep-
resentational space and therefore provide stronger constraints on
the computational mechanism than decoding models™>.
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Fig. 3 | The space of process models. Models of the processes taking place
in the brain can be defined at different levels of description and can vary

in their parametric complexity (dot size) and in their biological (horizontal
axis) and cognitive (vertical axis) fidelity. Theoreticians approach modeling
with a range of primary goals. The bottom-up approach to modeling (blue
arrow) aims first to capture characteristics of biological neural networks,
such as action potentials and interactions among multiple compartments
of single neurons. This approach disregards cognitive function so as to
focus on understanding the emergent dynamics of small parts of the brain,
such as cortical columns and areas, and to reproduce biological network
phenomena, such as oscillations. The top-down approach (red arrow) aims
first to capture cognitive functions at the algorithmic level. This approach
disregards the biological implementation so as to focus on decomposing
the information processing underlying task performance into its algorithmic
components. The two approaches form the extremes of a continuum of
paths toward the common goal of explaining how our brains give rise to our
minds. Overall, there is tradeoff (negative correlation) between cognitive
and biological fidelity. However, the tradeoff can turn into a synergy
(positive correlation) when cognitive constraints illuminate biological
function and when biology inspires models that explain cognitive feats.
Because intelligence requires rich world knowledge, models of human
brain information processing will have high parametric complexity (large
dot in the upper right corner). Even if models that abstract from biological
details can explain task performance, biologically detailed models will still
be needed to explain the neurobiological implementation. This diagram is a
conceptual cartoon that can help us understand the relationships between
models and appreciate their complementary contributions. However, it is
not based on quantitative measures of cognitive fidelity, biological fidelity
and model complexity. Definitive ways to measure each of the three
variables have yet to be developed. Figure inspired by ref. 12,

In this section, we considered three types of model that can
help us glean computational insight from brain-activity data.
Connectivity models capture aspects of the dynamic interactions
between regions. Decoding models enable us to look into brain
regions and reveal what might be their representational content.
Representational models enable us to test explicit hypotheses
that fully characterize a region’s representational space. All three
types of model can be used to address theoretically motivated
questions—taking a hypothesis-driven approach. However, in
the absence of task-performing computational models, they are
subject to Newell’s argument that asking a series of questions
might never reveal the computational mechanism underlying
the cognitive feat we are trying to explain. These methods fall
short of building the bridge all the way to theory because they
do not test mechanistic models that specify precisely how the
information processing underlying some cognitive function
might work.
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From theory to experiment

To build a better bridge between experiment and theory, we first
need to fully specify a theory. This can be achieved by defining
the theory mathematically and implementing it in a computa-
tional model (Box 1). Computational models can reside at different
levels of description, trading off cognitive fidelity against bio-
logical fidelity (Fig. 3). Models designed to capture only neuronal
components and dynamics” tend to be unsuccessful at explaining
cognitive function” (Fig. 3, horizontal axis). Conversely, models
designed to capture only cognitive functions are difficult to relate to
the brain (Fig. 3, vertical axis). To link mind and brain, models must
attempt to capture aspects of both behavior and neuronal dynam-
ics. Recent advances suggest that constraints from the brain can
help explain cognitive function*>*’* and vice versa’>**, turning the
tradeoff into a synergy.

In this section, we focus on recent successes with task-perform-
ing models that explain cognitive functions in terms of representa-
tions and algorithms. Task-performing models have been central to
psychophysics and cognitive science, where they are traditionally
tested with behavioral data. An emerging literature is beginning to
test task-performing models with brain-activity data as well. We will
consider two broad classes of model in turn, neural network models
and cognitive models.

Neural network models. Neural network models (Box 2) have a
long history, with interwoven strands in multiple disciplines. In com-
putational neuroscience, neural network models, at various levels
of biological detail, have been essential to understanding dynamics
in biological neural networks and elementary computational func-
tions?”**. In cognitive science, they defined a new paradigm for under-
standing cognitive functions, called parallel distributed processing,
in the 1980s°”°, which brought the field closer to neuroscience. In
Al they have recently brought substantial advances in a number of
applications**”*, ranging from perceptual tasks (such as vision and
speech recognition) to symbolic processing challenges (such as lan-
guage translation), and on to motor tasks (including speech synthesis
and robotic control). Neural network models provide a common lan-
guage for building task-performing models that meet the combined
criteria for success of the three disciplines (Fig. 2).

Like brains, neural network models can perform feedforward as
well as recurrent computations’’. The models driving the recent
advances are deep in the sense that they comprise multiple stages of
linear-nonlinear signal transformation. Models typically have mil-
lions of parameters (the connection weights), which are set so as
to optimize task performance. One successful paradigm is super-
vised learning, wherein a desired mapping from inputs to outputs is
learned from a training set of inputs (for example, images) and asso-
ciated outputs (for example, category labels). However, neural net-
work models can also be trained without supervision and can learn
complex statistical structure inherent to their experiential data.

The large number of parameters creates unease among research-
ers who are used to simple models with small numbers of inter-
pretable parameters. However, simple models will never enable
us to explain complex feats of intelligence. The history of AI has
shown that intelligence requires ample world knowledge and suf-
ficient parametric complexity to store it. We therefore must engage
complex models (Fig. 3) and the challenges they pose. One chal-
lenge is that the high parameter count renders the models difficult
to understand. Because the models are entirely transparent, they
can be probed cheaply with millions of input patterns to under-
stand the internal representations, an approach sometimes called
‘synthetic neurophysiology’. To address the concern of overfitting,
models are evaluated in terms of their generalization performance.
A vision model, for example, will be evaluated in terms of its ability
to predict neural activity and behavioral responses for images it has
not been trained on.
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Box 2 | Neural network models

The term “neural network model” has come to be associated with
a class of model that is inspired by biological neural networks
in that each unit combines many inputs and information is pro-
cessed in parallel through a network. In contrast to biologically
detailed models, which may capture action potentials and dy-
namics in multiple compartments of each neuron, these models
abstract from the biological details. However, they can explain
certain cognitive functions, such as visual object recognition,
and therefore provide an attractive framework for linking cogni-
tion to the brain.

A typical unit computes a linear combination of its inputs
and passes the result through a static nonlinearity. The output
is sometimes interpreted as analogous to the firing rate of
a neuron. Even shallow networks (those with a single layer of
hidden units between inputs and outputs) can approximate
arbitrary functions'”. However, deep networks (those with
multiple hidden layers) can more efficiently capture many
of the complex functions needed in real-world tasks. Many
applications—for example, in computer vision—use feedforward
architectures. However, recurrent neural networks, which
reprocess the outputs of their units and generate complex
dynamics, have brought additional engineering advances’ and
better capture the recurrent signaling in brains®'**-'**, Whereas
feedforward networks are universal function approximators,
recurrent networks are universal approximators of dynamical
systems'”’. Recurrent processing enables a network to recycle its
limited computational resources through time so as to perform
more complex sequences of computations. Recurrent networks
can represent the recent stimulus history in a dynamically
compressed format, providing the temporal context information
needed for current processing. As a result, recurrent networks
can recognize, predict, and generate dynamical patterns.

Both feedforward and recurrent networks are defined by
their architecture and the setting of the connection weights. One
way to set the weights is through iterative small adjustments
that bring the output closer to some desired output (supervised

Several recent studies have begun to test neural network mod-
els as models of brain information processing’*. These studies
predicted brain representations of novel images in the primate
ventral visual stream with deep convolutional neural network
models trained to recognize objects in images. Results have shown
that the internal representations of deep convolutional neural net-
works provide the best current models of representations of visual
images in inferior temporal cortex in humans and monkeys” .
When comparing large numbers of models, those that were opti-
mized to perform the task of object classification better explained
the cortical representation’””%.

Early layers of deep neural networks trained to recognize objects
contain representations resembling those in early visual cortex™®.
As we move along the ventral visual stream, higher layers of the
neural networks come to provide a better basis for explaining the
representations®*2. Higher layers of deep convolutional neural
networks also resemble the inferior temporal cortical representa-
tion in that both enable the decoding of object position, size and
pose, along with the category of the object®. In addition to testing
these models by predicting brain-activity data, the field has begun
to test them by predicting behavioral responses reflecting perceived
shape® and object similarity®.

Cognitive models. Models at the cognitive level enable research-
ers to envision the information processing without simultaneously
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learning). Each weight is adjusted in proportion to the reduction
in the error that a small change to it would yield. This method is
called gradient descent because it produces steps in the space of
weights along which the error declines most steeply. Gradient
descent can be implemented using backpropagation, an efficient
algorithm for computing the derivative of the error function
with respect to each weight.

Whether the brain uses an algorithm like backpropagation
for learning is controversial. Several biologically plausible
implementations of backpropagation or closely related forms
of supervised learning have been suggested'*-'*. Supervision
signals might be generated internally’®’ on the basis of the
context provided by multiple sensory modalities; on the basis of
the dynamic refinement of representations over time, as more
evidence becomes available from the senses and from memory'*
and on the basis of internal and external reinforcement signals
arising in interaction with the environment'”’. Reinforcement
learning* and unsupervised learning of neural network
parameters''>** are areas of rapid current progress.

Neural network models have demonstrated that taking
inspiration from biology can yield breakthroughs in AL It seems
likely that the quest for models that can match human cognitive
abilities will draw us deeper into the biology'*. The abstract
neural network models currently most successful in engineering
could be implemented with biological hardware. However,
they only use a small subset of the dynamical components
of brains. Neuroscience has described a rich repertoire of
dynamical components, including action potentials'®®, canonical
microcircuits*®, dendritic dynamics'******” and network pheno-
mena”, such as oscillations', that may have computational
functions. Biology also provides constraints on the global
architecture, suggesting, for example, complementary subsystems
for learning'”’. Modeling these biological components in the
context of neural networks designed to perform meaningful
tasks may reveal how they contribute to brain computation and
may drive further advances in AL

having to tackle its implementation with neurobiologically plausible
components. This enables progress on domains of higher cognition,
where neural network models still fall short. Moreover, a cognitive
model may provide a useful abstraction, even when a process can
also be captured with a neural network model.

Neuroscientific explanations now dominate for functional com-
ponents closer to the periphery of the brain, where sensory and
motor processes connect the animal to its environment. However,
much of higher-level cognition has remained beyond the reach of
neuroscientific accounts and neural network models. To illustrate
some of the unique contributions of cognitive models, we briefly
discuss three classes of cognitive model: production systems, rein-
forcement learning models and Bayesian cognitive models.

Production systems provide an early example of a class of cogni-
tive models that can explain reasoning and problem solving. These
models use rules and logic, and are symbolic in that they operate on
symbols rather than sensory data and motor signals. They capture
cognition, rather than perception and motor control, which ground
cognition in the physical environment. A ‘production’ is a cogni-
tive action triggered according to an if-then rule. A set of such rules
specifies the conditions (‘if”) under which each of a range of produc-
tions (‘thern’) is to be executed. The conditions refer to current goals
and knowledge in memory. The actions can modify the internal
state of goals and knowledge. For example, a production may create
a subgoal or store an inference. If conditions are met for multiple
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Box 3 | Bayesian cognitive models

Bayesian cognitive models are motivated by the assumption that the
brain approximates the statistically optimal solution to a task. The
statistically optimal way to make inferences and decide what to do
is to interpret the current sensory evidence in light of all available
prior knowledge using the rules of probability. Consider the case
of visual perception. The retinal signals reflect the objects in the
world, which we would like to recognize. To infer the objects, we
should consider what configurations of objects we deem possible
and how well each explains the image. Our prior beliefs are repre-
sented by a generative model that captures the probability of each
configuration of objects and the probabilities with which a given
configuration would produce different retinal images.

More formally, a Bayesian model of vision might use a
generative model of the joint distribution p(d, c) of the sensory
data d (the image) and the causes in the world ¢ (the configuration
of surfaces, objects and light sources to be inferred)'®. The
joint distribution p(d, ¢) equals the product of the prior, p(c),
over all possible configurations of causes and the likelihood,
p(d|c), the probability of a particular image given a particular
configuration of causes. A prescribed model for p(d|c) would
enable us to evaluate the likelihood, the probability of a specific
image d given specific causes c. Alternatively, we might have an
implicit model for p(d|c) in the form of a stochastic mapping
from causes ¢ to data d (images). Such a model would generate
natural images. Whether prescribed or implicit, the model of
p(d|c) captures how the causes in the world create the image, or
at least how they relate to the image. Visual recognition amounts
to computing the posterior p(c|d), the probability distribution
over the causes given a particular image. The posterior p(c|d)
reveals the causes ¢ as they would have to exist in the world
to explain the sensory data d''. A model computing p(c|d) is
called a discriminative model because it discriminates among
images—here mapping from effects (the image) to the causes.
The inversion mathematically requires a prior p(c) over the latent
causes. The prior p(c) can constrain the interpretation and help

rules, a conflict-resolution mechanism chooses one production. A
model specified using this formalism will generate a sequence of
productions, which may to some extent resemble our conscious
stream of thought while working toward some cognitive goal. The
formalism of production systems also provides a universal compu-
tational architecture®. Production systems such as ACT-R® were
originally developed under the guidance of behavioral data. More
recently such models have also begun to be tested in terms of their
ability to predict regional-mean fMRI activation time courses®’.

Reinforcement learning models capture how an agent can learn
to maximize its long-term cumulative reward through interaction
with its environment®>®. As in production systems, reinforcement
learning models often assume that the agent has perception and
motor modules that enable the use of discrete symbolic represen-
tations of states and actions. The agent chooses actions, observes
resulting states of the environment, receives rewards along the way
and learns to improve its behavior. The agent may learn a ‘value
function’ associating each state with its expected cumulative reward.
If the agent can predict which state each action leads to and if it
knows the values of those states, then it can choose the most prom-
ising action. The agent may also learn a ‘policy’ that associates each
state directly with promising actions. The choice of action must bal-
ance exploitation (which brings short-term reward) and exploration
(which benefits learning and brings long-term reward).

The field of reinforcement learning explores algorithms that
define how to act and learn so as to maximize cumulative reward.
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reduce the ambiguity resulting from the multiple configurations
of causes that can account for any image.

Basing the inference of the causes ¢ on a generative model
of p(d, c) that captures all available knowledge and uncertainty
is statistically optimal (i.e., it provides the best inferences given
limited data), but computationally challenging (i.e., it may
require more neurons or time than the animal can use). Ideally,
the generative model p(d, ¢) implicit to the inference p(c|d)
should capture our knowledge not just about image formation,
but also the things in the world and their interactions, and our
uncertainties about these processes. One challenge is to learn
a generative model from sensory data. We need to represent
the learned knowledge and the remaining uncertainties. If the
generative model is mis-specified, then the inference will not be
optimal. For real-world tasks, some degree of misspecification of
the model is inevitable. For example, the generative model may
contain an overly simplified version of the image-generation
process. Another challenge is the computation of the posterior
p(c|d). For realistically complex generative models, the inference
may require computationally intensive iterative algorithms
such as Markov chain Monte Carlo, belief propagation or
variational inference. The brain’s compromise between statistical
and computational efficiency*'* may involve learning
fast feedforward recognition models that speed up frequent
component inferences, crystallizing conclusions that are costly
to fluidly derive with iterative algorithms. This is known as
amortized inference'*>'*°.

Bayesian cognitive models have recently flourished in
interaction with machine learning and statistics. Early work used
generative models with a fixed structure that were flexible only
with respect to a limited set of parameters. Modern generative
models can grow in complexity with the data and discover their
inherent structure’. They are called nonparametric because they
are not limited by a predefined finite set of parameters'"’. Their
parameters can grow in number without any predefined bound.

With roots in psychology and neuroscience, reinforcement learn-
ing theory is now an important field of machine learning and AL It
provides a very general perspective on control that includes the clas-
sical techniques dynamic programming, Monte Carlo and exhaus-
tive search as limiting cases, and can handle challenging scenarios
in which the environment is stochastic and only partially observed,
and its causal mechanisms are unknown.

An agent might exhaustively explore an environment and learn
the most promising action to take in any state by trial and error
(model-free control). This would require sufficient time to learn,
enough memory, and an environment that does not kill the agent
prematurely. Biological organisms, however, have limited time to
learn and limited memory, and must avoid interactions that might
kill them. Under these conditions, an agent might do better to build
a model of its environment. A model can compress and generalize
experience to enable intelligent action in novel situations (model-
based control). Model-free methods are computationally efficient
(mapping from states to values or directly to actions), but statis-
tically inefficient (learning takes long); model-based methods are
more statistically efficient, but may require prohibitive amounts of
computation (to simulate possible futures)®.

Until experience is sufficient to build a reliable model, an
agent might do best to simply store episodes and revert to paths
of action that have met with success in the past (episodic con-
trol)°»*2. Storing episodes preserves sequential dependency
information important for model building. Moreover, episodic
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Box 4 | Why do cognitive science, computational neuroscience and Al need one another?

Cognitive science needs computational neuroscience, not
merely to explain the implementation of cognitive models in
the brain, but also to discover the algorithms. For example, the
dominant models of sensory processing and object recognition
are brain-inspired neural networks, whose computations are
not easily captured at a cognitive level. Recent successes with
Bayesian nonparametric models do not yet in general scale to
real-world cognition. Explaining the computational efficiency
of human cognition and predicting detailed cognitive dynamics
and behavior could benefit from studying brain-activity dynam-
ics. Explaining behavior is essential, but behavioral data alone
provide insufficient constraints for complex models. Brain data
can provide rich constraints for cognitive algorithms if leveraged
appropriately. Cognitive science has always progressed in close
interaction with artificial intelligence. The disciplines share the
goal of building task-performing models and thus rely on com-
mon mathematical theory and programming environments.
Computational neuroscience needs cognitive science
to challenge it to engage higher-level cognition. At the
experimental level, the tasks of cognitive science enable
computational neuroscience to bring cognition into the lab. At
the level of theory, cognitive science challenges computational
neuroscience to explain how the neurobiological dynamical
components it studies contribute to cognition and behavior.
Computational neuroscience needs AI, and in particular
machine learning, to provide the theoretical and technological

control enables the agent to exploit such dependencies even
before understanding the causal mechanism supporting a suc-
cessful path of action.

The brain is capable of each of these three modes of control
(model-free, model-based, episodic)® and appears to combine
their advantages using an algorithm that has yet to be discovered.
AT and computational neuroscience share the goal of discovering
this algorithm*****-*, although they approach this goal from dif-
ferent angles. This is an example of how a cognitive challenge can
motivate the development of formal models and drive progress in
AT and neuroscience.

A third, and critically important, class of cognitive model is
that of Bayesian models (Box 3)**°-%. Bayesian inference provides
an essential normative perspective on cognition. It tells us what a
brain should in fact compute for an animal to behave optimally.
Perceptual inference, for example, should consider the current sen-
sory data in the context of prior beliefs. Bayesian inference simply
refers to combining the data with prior beliefs according to the rules
of probability.

Bayesian models have contributed to our understanding of basic
sensory and motor processes’*~**. They have also provided insights
into higher cognitive processes of judgment and decision mak-
ing, explaining classical cognitive biases” as the product of prior
assumptions, which may be incorrect in the experimental task but
correct and helpful in the real world.

With Bayesian nonparametric models, cognitive science has begun
to explain more complex cognitive abilities. Consider the human
ability to induce a new object category from a single example. Such
inductive inference requires prior knowledge of a kind not captured
by current feedforward neural network models'”. To induce a cat-
egory, we rely on an understanding of the object, of the interactions
among its parts, of how they give rise to its function. In the Bayesian
cognitive perspective, the human mind, from infancy, builds men-
tal models of the world”’. These models may not only be generative
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basis for modeling cognitive functions with biologically plausible
dynamical components.

Artificial intelligence needs cognitive science to guide the
engineering of intelligence. Cognitive science’s tasks can serve
as benchmarks for AI systems, building up from elementary
cognitive abilities to artificial general intelligence. The literatures
on human development and learning provide an essential
guide to what is possible for a learner to achieve and what
kinds of interaction with the world can support the acquisition
of intelligence. AI needs computational neuroscience for
algorithmic inspiration. Neural network models are an example of
a brain-inspired technology that is unrivalled in several domains
of Al Taking further inspiration from the neurobiological
dynamical components (for example, spiking neurons, dendritic
dynamics, the canonical cortical microcircuit, oscillations,
neuromodulatory processes) and the global functional layout of
the human brain (for example, subsystems specialized for distinct
functions, including sensory modalities, memory, planning and
motor control) might lead to further AI breakthroughs. Machine
learning draws from separate traditions in statistics and computer
science, which have optimized statistical and computational
efficiency, respectively. The integration of computational
and statistical efficiency is an essential challenge in the age of
big data. The brain appears to combine computational and
statistical efficiency, and understanding its algorithm might
boost machine learning.

models in the probabilistic sense, but may be causal and composi-
tional, supporting mental simulations of processes in the world using
elements that can be re-composed to generalize to novel and hypo-
thetical scenarios>**'"". This modeling approach has been applied to
our reasoning about the physical'*’'*” and even the social'** world.

Generative models are an essential ingredient of general intel-
ligence. An agent attempting to learn a generative model strives
to understand all relationships among its experiences. It does
not require external supervision or reinforcement to learn, but
can mine all its experiences for insights on its environment and
itself. In particular, causal models of processes in the world (how
objects cause images, how the present causes the future) can give
an agent a deeper understanding and thus a better basis for infer-
ences and actions.

The representation of probability distributions in neuronal pop-
ulations has been explored theoretically and experimentally'*>'%.
However, relating Bayesian inference and learning, especially
structure learning in nonparametric models, to its implementation
in the brain remains challenging'””. As theories of brain compu-
tation, approximate inference algorithms such as sampling may
explain cortical feedback signals and activity correlations®>'%-1°,
Moreover, the corners cut by the brain for computational effi-
ciency, the approximations, may explain human deviations from
statistical optimality. In particular, cognitive experiments have
revealed signatures of sampling'' and amortized inference'" in
human behavior.

Cognitive models, including the three classes highlighted here,
decompose cognition into meaningful functional components. By
declaring their models independent of the implementation in the
brain, cognitive scientists are able to address high-level cognitive
processes””* that are beyond the reach of current neural networks.
Cognitive models are essential for cognitive computational neuro-
science because they enable us to see the whole as we attempt to
understand the roles of the parts.

1155


http://www.nature.com/natureneuroscience

REVIEW ARTICLE NATURE NEUROSCIENCE

Box 5 | Shareable tasks, data, models and tests: a new culture of multidisciplinary collaboration

Neurobiologically plausible models that explain cognition will
have substantial parametric complexity. Building and evaluat-
ing such models will require machine learning and big brain
and behavioral datasets. Traditionally, each lab has developed its
own tasks, datasets, models and tests with a focus on the goals
of its own discipline. To scale these efforts up to meet the chal-
lenge, we will need to develop tasks, data, models and tests that
are relevant across the three disciplines and shared among labs
(see figure). A new culture of collaboration will assemble big data
and big models by combining components from different labs.
To meet the conjoined criteria for success of cognitive science,
computational neuroscience and artificial intelligence, the best
division of labor might cut across the traditional disciplines.

Tasks. By designing experimental tasks, we carve up cognition
into components that can be quantitatively investigated. A task
is a controlled environment for behavior. It defines the dynamics
of a task ‘world’ that provides sensory input (for example, visual
stimuli) and captures motor output (for example, button press,
joystick control or higher-dimensional limb or whole-body con-
trol). Tasks drive the acquisition of brain and behavioral data
and the development of AI models, providing well-defined chal-
lenges and quantitative performance benchmarks for comparing
models. The ImageNet tasks'*, for example, have driven substan-
tial progress in computer vision. Tasks should be designed and
implemented such that they can readily be used in all three disci-
plines to drive data acquisition and model development (related
developments include OpenATI’s Gym, https://gym.openai.com/;
Universe, https://universe.openai.com/; and DeepMind’s Lab'*’).
The spectrum of useful tasks includes classical psychophysical
tasks employing simple stimuli and responses as well as interac-
tions in virtual realities. As we engage all aspects of the human
mind, our tasks will need to simulate natural environments and
will come to resemble computer games. This may bring the added
benefit of mass participation and big behavioral data, especially
when tasks are performed via the Internet'*’.

Data. Behavioral data acquired during task performance pro-
vides overall performance estimates and detailed signatures of
success and failure, of reaction times and movement trajectories.
Brain-activity measurements characterize the dynamic computa-
tions underlying task performance. Anatomical data can char-
acterize the structure and connectivity of the brain at multiple
scales. Structural brain data, functional brain data and behavioral
data will all be essential for constraining computational models.

Models. Task-performing computational models can take sen-
sory inputs and produce motor outputs so as to perform experi-
mental tasks. Al-scale neurobiologically plausible models can be
shared openly and tested in terms of their task performance and
in terms of their ability to explain a variety of brain and behav-
ioral datasets, including new datasets acquired after definition of
the model. Initially, many models will be specific to small subsets
of tasks. Ultimately, models must generalize across tasks.

Tests. To assess the extent to which a model can explain brain
information processing during a particular task, we need tests
that compare models and brains on the basis of brain and

Looking ahead
Bottom up and top down. The brain seamlessly merges bottom-
up discriminative and top-down generative computations in per-
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behavioral data. Every brain is idiosyncratic in its structure and
function. Moreover, for a given brain, every act of perception,
cognition and action is unique in time and cannot be repeated
precisely because it permanently changes the brain in question.
These complications make it challenging to compare brains and
models. We must define the summary statistics of interest and
the correspondence mapping between model and brain in space
and time at some level of abstraction. Developing appropriate
tests for adjudicating among models and determining how close
we are to understanding the brain is not merely a technical chal-
lenge of statistical inference. It is a conceptual challenge funda-
mental to theoretical neuroscience.

The interaction among labs and disciplines can benefit from
adversarial cooperation'**. Cognitive researchers who feel that
current computational models fall short of explaining an impor-
tant aspect of cognition are challenged to design shareable tasks
and tests that quantify these shortcomings and to provide human
behavioral data to set the bar for Al models. Neuroscientists
who feel that current models do not explain brain information
processing are challenged to share brain-activity data acquired
during task performance and tests comparing activity patterns
between brains and models to quantify the shortcomings of the
models. Although we will have a plurality of definitions of suc-
cess, translating these into quantitative measures of the quality of
amodel is essential and could drive progress in cognitive compu-
tational neuroscience, as well as engineering.
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Computational neuroscience
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Interactions among shareable components. Tasks, data, models and
tests are components (gray nodes) that lend themselves to sharing
among labs and across disciplines, to enable collaborative construction
and testing of big models driven by big brain and behavioral datasets
assembled across labs.

ceptual inference, and model-free and model-based control. Brain
science likewise needs to integrate its levels of description and
to progress both bottom-up and top-down, so as to explain task
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performance on the basis of neuronal dynamics and provide a
mechanistic account of how the brain gives rise to the mind.

Bottom-up visions, proceeding from detailed measurements
toward an understanding of brain computation, have been promi-
nent and have driven the most important recent funding initia-
tives. The European Human Brain Project and the US BRAIN
Initiative are both motivated by bottom-up visions, in which an
understanding of brain computation is achieved by measuring
and modeling brain dynamics with a focus on the circuit level.
The BRAIN Initiative seeks to advance technologies for measur-
ing and manipulating neuronal activity. The Human Brain Project
attempts to synthesize neuroscience data in biologically detailed
dynamic models. Both initiatives proceed primarily from experi-
ment toward theory and from the cellular level of description to
larger-scale phenomena.

Measuring large numbers of neurons simultaneously and model-
ing their interactions at the circuit level will be essential. The bot-
tom-up vision is grounded in the history of science. Microscopes
and telescopes, for example, have brought scientific breakthroughs.
However, it is always in the context of prior theory (generative mod-
els of the observed processes) that better observations advance our
understanding. In astronomy, for example, the theory of Copernicus
guided Galileo in interpreting his telescopic observations.

Understanding the brain requires that we develop theory and
experiment in tandem and complement the bottom-up, data-
driven approach by a top-down, theory-driven approach that starts
with behavioral functions to be explained'*'"". Unprecedentedly
rich measurements and manipulations of brain activity will drive
theoretical insight when they are used to adjudicate between
brain-computational models that pass the first test of being able
to perform a function that contributes to the behavioral fitness of
the organism. The top-down approach, therefore, is an essential
complement to the bottom-up approach toward understanding
the brain (Fig. 3).

Integrating Marr’s levels. Marr (1982) offered a distinction of three
levels of analysis: (i) computational theory, (ii) representation and
algorithm, and (iii) neurobiological implementation'”. Cognitive
science starts from computational theory, decomposing cognition
into components and developing representations and algorithms
from the top down. Computational neuroscience proceeds from the
bottom up, composing neuronal building blocks into representa-
tions and algorithms thought to be useful components in the con-
text of the brain’s overall function. Al builds representations and
algorithms that combine simple components to implement com-
plex feats of intelligence. All three disciplines thus converge on the
algorithms and representations of the brain and mind, contributing
complementary constraints''.

Marr’s levels provide a useful guide to the challenge of
understanding the brain. However, they should not be taken to
suggest that cognitive science need not consider the brain or that
computational neuroscience need not consider cognition (Box 4).
Marr was inspired by computers, which are designed by human
engineers to precisely conform to high-level algorithmic descrip-
tions. This enables the engineers to abstract from the circuits
when designing the algorithms. Even in computer science, how-
ever, certain aspects of the algorithms depend on the hardware,
such as its parallel processing capabilities. Brains differ from
computers in ways that exacerbate this dependence. Brains are
the product of evolution and development, processes that are not
constrained to generate systems whose behavior can be perfectly
captured at some abstract level of description. It may therefore
not be possible to understand cognition without considering
its implementation in the brain or, conversely, to make sense of
neuronal circuits except in the context of the cognitive functions
they support.
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For an example of a challenge that transcends the disciplines,
consider a child seeing an escalator for the first time. She will
rapidly recognize people on steps traveling upward obliquely. She
might think of it as a moving staircase and imagine riding on it,
being lifted one story without exerting any effort. She might infer its
function and form a new concept on the basis of a single experience,
before ever learning the word “escalator”

Deep neural network models provide a biologically plausible
account of the rapid recognition of the elements of the visual expe-
rience (people, steps, oblique upward motion, handrail). They can
explain the computationally efficient pattern recognition compo-
nent"”. However, they cannot explain yet how the child understands
the relationships among the elements, the physical interactions of
the objects, the people’s goal to go up, and the function of the esca-
lator, or how she can imagine the experience and instantly form a
new concept.

Bayesian nonparametric models explain how deep inferences
and concept formation from single experiences are even possible.
They may explain the brain’s stunning statistical efficiency; its ability
to infer so much from so little data by building generative models
that provide abstract prior knowledge®. However, current inference
algorithms require large amounts of computation and, as a result,
do not yet scale to real-world challenges such as forming the new
concept “escalator” from a single visual experience.

On a 20-watt power budget, the brains algorithms combine
statistical and computational efficiency in ways that are beyond
current Al of either the Bayesian or the neural network variety.
However, recent work in AI and machine learning has begun to
explore the intersection between Bayesian inference and neural
network models, combining the statistical strengths of the for-
mer (uncertainty representation, probabilistic inference, statistical
efficiency) with the computational strengths of the latter (repre-
sentational learning, universal function approximation, computa-
tional efficiency)'’~'".

Integrating all three of Marr’s levels will require close collabora-
tion among researchers with a wide variety of expertise. It is diffi-
cult for any single lab to excel at neuroscience, cognitive science and
Al-scale computational modeling. We therefore need collaborations
between labs with complementary expertise. In addition to conven-
tional collaborations, an open science culture, in which components
are shared between disciplines, can help us integrate Marr’s levels.
Shareable components include cognitive tasks, brain and behavioral
data, computational models, and tests that evaluate models by com-
paring them to biological systems (Box 5).

The study of the mind and brain is entering a particularly excit-
ing phase. Recent advances in computer hardware and software
enable Al-scale modeling of the mind and brain. If cognitive sci-
ence, computational neuroscience and Al can come together, we
might be able to explain human cognition with neurobiologically
plausible computational models.
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