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¢ SD (Semantic Differential), LSA (Latent Semantic Analysis), SVD (Singular Value Decompositon), LDA (Latent Direchlet Allocation), NMF (Non-negative Matrix
Factorization)
¢ seq2seq, BERT
o BERT = masked language model + transformer (self attention) + position encoder,
¢ Language model, SRN (Simple recurrent networks), BIRNN (bidirectiornla RNN), LSTM (Long short-term memory), VAE (variational auto-encoder)
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Table 1. Major computational models of reading organised in terms of their primary focus®”

Model s

Models of visual word recognition
1A [11,22]

Multiple read-out [3]

SCM [2]

BR [4-6]

LTRS [8]

Overlap [66]

Diffusion model [30]
SERIOL [7]

Models of reading aloud
CDP++ [13]

DRC [12]

Triangle [24,25]
Sequence encoder [15]
Junction model [50]

Math/comp

Math/comp
Math/comp
Math/comp
Math/comp

Localist/symbolic

1A

Distributed connectionist
Distributed connectionist
Distributed connectionist

Models of eye-movement control in reading

E-Z reader [17,18]

SWIFT [19]

Model of morphology

Amorphous discriminative learning [1

Symbolic
Symbolic

6] Symbolic network

Pl Word-superiority effect

PI, LD Word-superiority effect

LD, MP Letter order

LD, MP Word frequency, letter order, \/
RT distribution

MP, Pl Letter order

Pl Letter order

LD RT distribution, word frequency

LD, MP Letter order

RA Reading aloud N

RA, LD Reading aloud

RA Reading aloud

RA Reading aloud N

RA Reading aloud N

R Eye movements

R Eye movements

Self-paced reading, LD Morphology N

®The table also indicates the modelling style or framework, the main task that the model simulates, the main phenomena that the model simulates (not exhaustive), and
whether the model uses a realistically sized lexicon. Note that the review concentrates on ‘Models of visual word recognition’.

®Abbreviations: Math/comp, mathematical or computational; LD, lexical decision; Pl, perceptual identification; RA, reading aloud; MP, masked priming; R, natural reading.
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Figure 1. Two diagrams of the lexical processing system. The one on the left is taken from
Patterson and Shewell (1987), and the one on the right is taken from Seidenberg and
McClelland (1989). Lexical and sublexical pathways of processing can be found in both
diagrams.
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Fig. 2. The overall architecture of CDP+. Note: Numbers shown inside the various layers
index slot positions, whereas letters indicate the type of representation (f = features, 1 = letter,
o = onset, v = vowel, ¢ = coda).
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Fig. 4. Mean human and CDP++ reaction times (RTs) of monosyllabic
and disyllabic words on the full ELP (2007) database.
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Fig. 3. The overall architecture of CDP++. Note: Numbers shown inside the various layers index slot
positions, whereas letters indicate the type of representation (f = feature, | = letter, o = onset, v = vowel, ¢
= coda). S1 = first syllable stress; S2 = second syllable stress.

Table 1
List of monosyllabic benchmark effects (from Perry et al. (2007)). Tick marks indicate successful simulations (for details, sce
Appendix D).
Name of effect Description CDP+_ CDP++
Frequency High-frequency words are faster/more accurate than low-frequency words  »= 1=
Lexicality Words are faster/more accurate than pseudowords e
Length x lexicality Nonword naming latencies increase linearly with each additional letter e
Frequency x regularity Irregular words are slower/less accurate than regular words. This effectis s 1=
typically larger for low-frequency words (Paap and Noel, 1991) but has also
been reported for high-frequency words (Jared, 2002)
Word consistency Inconsistent words are slower/less accurate than consistent words. The size of 1= 1=
the effect depends on the friend-enemy ratio
Nonword consistency  Nonword pronunciations show graded consistency effects; that is, people do b= 1=
not always use the most common grapheme-phoneme correspondences
Position of irregularity  The size of the regularity effect is bigger for words with first position P
irregularities (e.g., chef) than for words with second or third position
irregularities
Body neighborhood  Words with many body neighbors are faster/more accurate than words with 1= —
few body neighbors
Pseudohomophone  Nonwords that sound like real words (e.g. bloo) are faster/more accurate than 1= 1
advantage orthographic controls
Surface dyslexia Patient MP showed a specific irregular word reading impairment that was ~ » 1=
modulated by the consistency ratio of the words as well as their frequency
Phonological dyslexia Patient LB showed a specific nonword reading impairment which was reduced 1= 1
with pseudohomophones orthographically similar to their base words
Masked priming Words preceded by a masked onset prime are faster/more accurate than words 1= 1=
preceded by unrelated primes
Table 2

Percentage of variance accounted for (R?) by CDP++, CDP+ (Perry et al., 2007), CDP (Zorzi et al,, 1998a), the Triangle model (Plaut
etal, 1996), and the DRC (Coltheart et al., 2001) on the Spieler and Balota (SB, 1997), Balota and Spieler (BS, 1998), Treiman et al.
(1995), and Seidenberg and Waters (SW, 1989) databases.

Database Models

CDP++ CDP+ cop Triangle DRC
SB (1997) 195 173 59 33 37
BS (1998) 240 216 67 29 55
Treiman 181 159 65 33 48
sw 109 96 27 3.0 61
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Fig. D1. Human data (milliseconds) and CDP++ simulations (cycles) of Jared’s (2002)
Experiment 1 and Experiment 2.
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Fig. D2. Human data (response probabilities for regular pronunciations) and simulations of
different models for the “no regular analogy nonwords” (Experiment 1) and the “no

regular analogy with many body neighbors nonwords” (Experiment 2) of Andrews and
Scarratt (1998).
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Figure 5. Basic architecture of the large-scale junction model.
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Figure 9. Model mean response times plotted against the naming response Figure 10. Model mean response times plotted against the lexical decision

time residuals from the Elexicon database, in normalized coordinates. ::%%egir:?aﬁ(etlsme residuals from the Elexicon database, in normalized

DRC comparison PMSP comparisons
N =5190 N = 2808
Junction DRC Junction Sim 1 Sim2 Sim3 Sim4
R? 12.2% 5.1% 14.7% 5.2% 4.1% 2.1% 11.9%

Table 1. Proportions of variance in naming response times accounted for by the junction model, compared
with the DRC and PMSP models
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Encoding Sequence
250 Hidden Units

Encoding Hidden
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Inputs
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Encoding SRN
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Decoding Hidden
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Decoding Context
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Decoding Sequence
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Fig. 1. Diagram of the sequence encoder architecture, with numbers of units used in Simulation 1 shown for
each group. Note: These numbers were determined by trial and error to be sufficient to support near asymptotic
performance on the training sequences. Solid arrows denote full connectivity and learned weights, and dashed
arrows denote one-to-one copy connections. Rectangular groupings denote external (prescribed) representations
coded over localist units, and oval groupings denote internal (learned) representations distributed over hidden units.
SRN = simple recurrent network.
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Fig. 2. Average pairwise correlations between conjunction patterns, plotted as a function of intervening letters
(left) or difference in wordform length (right). Note: For intervening letters, the effect of wordform length was
partialled out before correlations were computed.
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